CIMPA-ICTP research school on
Artin L-functions, Artin's primitive roots conjecture and applications
Nesin Mathematics Village, Şirince, Turkey.
May 29th - June 9th 2017
Home Courses Notes Lecturers Schedule


Groups and RepresentationsMonsurrò and Quéguiner-Mathieu
Algebraic Number TheoryOzman and Salerno
Elliptic CurvesStevenhagen and Talamanca
Prime NumbersPappalardi and Pehlivan
L-functions and zeta functionsVillegas, Voutier and Waldschmidt

Schedule


 
Week 1
MondayTuesdayWednesdayThursdayFriday
09.00-09.50 Distribution of Primes I
Pappalardi
Groups I
Monsurrò
Groups III
Monsurrò
Representations of Finite Groups IV
Quéguiner-Mathieu
Introduction to the Riemann zeta function II
Waldschmidt
10.00-10.50
10.50-11.10 BREAK
11.10-12.00 Elliptic Curves I
Talamanca
Elliptic Curves II
Talamanca
Distribution of Primes II
Pappalardi
Introduction to the Riemann zeta function I
Waldschmidt
Representations of Finite Groups V
Quéguiner-Mathieu
12.10-13.00
13.00-15.00LUNCH
15.00-15.50 Algebraic Number Theory I
Salerno
Representations of Finite Groups II
Quéguiner-Mathieu
Free
Afternoon
Elliptic Curves III
Stevenhagen
Distribution of Primes III
Pappalardi
Algebraic Number Theory II
Salerno
16.00-16.50



Week 2
MondayTuesdayWednesdayThursdayFriday
09.00-09.50 Algebraic Number Theory III
Salerno
Introduction to L-functions IV
Voutier
Artin Conjecture, Hooley's Theorem and the Quasiresolution V
Pehlivan
Chebotarev Density Theorem V
Ozman
L-functions and Motives VII
Villegas
Chebotarev Density Theorem VI
Ozman
10.00-10.50
10.50-11.10 BREAK
11.10-12.00 Chebotarev Density Theorem IV
Ozman
Artin Conjecture, Hooley's Theorem and the Quasiresolution IV
Pehlivan
Lang-Trotter Conjecture for Primitive Points IV
Stevenhagen
L-functions and Motives VI
Villegas
Lang-Trotter Conjecture for Primitive Points V
Stevenhagen
12.10-13.00
13.00-15.00LUNCH
15.00-15.50 Introduction to L-functions III
Voutier
L-functions and Motives V
Villegas
Free Afternoon Seminars TBA
16.00-16.50