Nepal Algebra Project 2019 Midterm exam

Tribhuvan University

July 1^{st} 2019

1. (a) Find the minimal polynomial of $\alpha = 5 - 2\sqrt{3}$ over \mathbb{Q} , and *prove* that it is the minimal polynomial.

(5 marks)

(b) Prove that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{3})$ and that it is a normal extension of \mathbb{Q} .

(5 marks)

2. Let L/K is a finite extension of degree n and let F be an intermediate field (i.e. $K \subseteq F \subseteq L$). Prove that the degree [F:K] is a divisor of n. Deduce which are the intermediate fields of an extension of degree 3.

$$(10 \text{ marks})$$

(2 marks)

(3 marks)

(3 marks)

(2 marks)

(2 marks)

(2 marks)

(2 marks)

(4 marks)

- 3. Let $f(x) = x^3 4x + 1 \in \mathbb{Q}[x]$.
 - (a) Prove that f(x) is irreducible.
 - (b) Suppose that α is a root of $x^3 4x + 1$ in \mathbb{C} . Express α^{-1} and $(1 + \alpha)^{-1}$ as linear combinations, with rational coefficients, of 1, α and α^2 .
 - (c) Prove that α^3 , α^4 and α^5 are linearly independent over \mathbb{Q} .
 - (d) Prove that for every integer $n \neq 0$, we have $\mathbb{Q}(\alpha^n) = \mathbb{Q}(\alpha)$.
- (2 marks) 4. Let $\zeta = \sqrt{3} - \sqrt{2}$.
 - (a) Show that $\mathbb{Q}(\sqrt{6}) \subset \mathbb{Q}(\zeta)$. (2 marks)
 - (b) Show that $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\zeta)$ and that $\mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\zeta)$. (2 marks)
 - (c) Determine the minimal polynomial of ζ over \mathbb{Q} .
 - (d) Calculate $[\mathbb{Q}(\zeta) : \mathbb{Q}]$.
 - (e) Prove that $\mathbb{Q}(\zeta)$ is a normal extension of \mathbb{Q} .

5. Let $f = X^4 - 2$.

- (a) Prove that $E = \mathbb{Q}(\sqrt[4]{2}, i)$ is a splitting field for f over \mathbb{Q} .
- (b) Calculate $[E:\mathbb{Q}]$ and decide whether or not the extension $E/\mathbb{Q}(i)$ is normal.
- (c) Write some of the intermediate subfields for the extension E/\mathbb{Q} .

(4 marks)