NAP 2019 - MODULE V - CLASS #3 July 18,2019

Lea Terracini

- **Theorem:** Let L/K be a finite extension of finite fields of characteristic p, with $|K| = p^t$. Then it is Galois and $\text{Gal}(L/K) = \langle \Phi^t \rangle$.
- Classification theorem of finite abelian groups: every finite abelian group is isomorphic to a product of cyclic groups:

$$\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_s},$$

where d_1, \ldots, d_s can be chosen such that $d_1|d_2|\cdots|d_s$.

- **Corollary:** A finite abelian group is isomorphic to a product of cyclic groups of prime power order.
- **Definition:** If G is a finite group then the *exponent* of G, denoted by exp(G), is the least positive integer k such that $g^k = 1, \forall g \in G$.

$$exp(G) = \operatorname{lcm}\{o(g) \mid g \in G\}.$$

- Examples: $exp(S_3) = 6$, $exp(S_6) = 60$, $exp(\mathbb{Z}_2 \times \mathbb{Z}_2 = 2)$, $exp(\mathbb{Z}_2 \times \mathbb{Z}_3) = 6$.
- Corollary: Let G be a finite abelian group. There exists an element $g \in G$ uch that o(g) = exp(G).

- Corollary: Let K be a field and G be a finite subgroup of K[×]. Then G is cyclic.
 This corollary generalizes to an arbitrary field a well-known property of C[×].
 In particular the multiplicative group F[×]_{pⁿ} of any finite field is cyclic.
- Corollary: Let L/K be a finite extension of finite fields. Then it is simple, that is there is an element $\alpha \in L$ such that $L = K(\alpha)$.
- **Remark:** in the notation above, if $L^{\times} = \langle \alpha \rangle$ then $L = K(\alpha)$. The converse is not true.