NAP 2019 - MODULE V - CLASS #1 July 17,2019

Lea Terracini

- **Example**: we showed the irreducibility of the polynomial $X^p X 1$ over \mathbb{F}_p , and its variants $X^p X j$, $j \in \mathbb{F}_p^{\times}$. Adding to \mathbb{F}_p a root α of each of these polynomials gives rise to a field $\mathbb{F}_p(\alpha)$ of order p^p .
- $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m} \Leftrightarrow n|m$
- Corollary:

$$X^{p^n} - X = \prod g(X)$$

where g(X) varies in the set of irreducible polynomials in $\mathbb{F}_p[X]$ of degree dividing n.

• Example: Factorization

$$X^{16} - X = X(X-1)(X^2 + X + 1)(X^4 + X + 1)(X^4 + X^3 + 1)(X^4 + X^3 + X^2 + X + 1).$$

- Question: Let p, q be prime numbers; how many irrducible polynomials of degree q are there in $\mathbb{F}_p[X]$?
- Preliminary considerations on Galois groups: if L/K is a finite extension of finite fields and G = Gal(L/K) then
 - every subgroup of G is normal: G is a Dedekind group.

– for every d dividing |G| there exists exactly one subgroup of G of order d.

We observed that *cyclic* groups satisfy both this conditions.

• **Theorem** : $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is a cyclic group generated by the Frobenius automorphism Φ .