NAP 2019 - MODULE V - CLASS #1 July 15,2019

Lea Terracini

- We discussed about the existence of finite fields and recall that Z_n is a field if and only if n is a prime number.
 For every prime p we denote by F_p the field of order p.
- We noticed that we can construct some other finite fields as quotients $K = \mathbb{F}_p[X]/(g(X))$ where g(X) is an irreducible polynomial in $\mathbb{F}_p[X]$; such a field K has order p^n , where $n = \deg(g(X))$. It can be regarded as the extension $\mathbb{F}_p(\alpha)$ of \mathbb{F}_p , where α is a root of g(X). **Example**: $K_1 = \mathbb{F}_7[X]/(X^2 + 1), K_2 = \mathbb{F}_7[X]/(X^2 + 2)$ are both fields of order 49.
- Every finite field K has characteristic a prime number p, contains \mathbb{F}_p as prime subfield and has order p^n for some $n \ge 1$.
- Theorem: a) For every prime number p and every natural number n > 0 there exists a field K of order pⁿ.
 b) K is the splitting field of the polynomial X^{pⁿ} X over F_p.
 c) K is essentially unique, that is every field of order pⁿ is isomorphic to K.
- We deeply analysed point c) of the previous theorem, discussed the difference between *equality* and *isomorphism* and constructed explicitly an isomorphism

$$\theta : \mathbb{F}_7(\alpha) \longrightarrow \mathbb{F}_7(\beta)$$

where α is a root of $X^2 + 1$ and β is a root of $X^2 + 2$.

• The theorem above enables us to denote by \mathbb{F}_p^n the field of order p^n (unique up to isomorphism). By construction $\mathbb{F}_{p^n}/\mathbb{F}_p$ is a normal ex-

tension. It is obviously finite and it is separable, since it is algebraic over its prime subfield. It is a Galois extension.

• Next tasks: study the groups $\mathbb{F}_{p^n}^{\times}$, $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$.