NAP 2019 - MODULE V - PROBLEM SET 2 DUE TUESDAY JULY 30, 2019, AT 24:00 KATHMANDU TIME

Exercise 1

Show that if the Galois group of a rational cubic polynomial f(x) is cyclic of order 3 then f(x) has only real roots.

Exercise 2

Let f be an irreducible cubic polynomial over a finite field of characteristic different from 2, 3. Show that its discriminant is a square.

Exercise 3

Let K be a subfield of \mathbb{C} . Let $f(x) = x^3 + px + q$ be an irreducible polynomial in K[x]. Let α be a root of f(x). Let $\beta = a + b\alpha + c\alpha^2 \in K(\alpha) \setminus K$, with $a, b, c \in K$. Determine the minimal polynomial g(X) of β over K. Let Δ be the discriminant of f(X) over K. Show that $K(\alpha)/K$ is an extension by radicals if and only if -3Δ is a square in K.

Exercise 4

Solve Exercise 14.5 in Garling's book.

Exercise 5

For each of the following polynomials, check irreducibility and give the Galois group over $\mathbb{Q}:$

a) $X^3 - 4X - 1;$ b) $X^4 + X + 1;$ c) $X^4 + X^3 + X^2 + X + 1;$ d) $X^4 + X^3 - X^2 - 2X - 2.$

Please justify all answers!