
NAP 2019 - MODULE V - Problem Set 2 - Solutions

Due Tuesday July 30, 2019, at 24:00 Kathmandu time

Exercise 1
Show that if the Galois group of a rational cubic polynomial f(x) is
cyclic of order 3 then f(x) has only real roots.

Solution
Since f(x) has degree 3, it has at least one real root α (in fact every
complex non-real root must be paired with its complex conjugate). Let
K = Q(α). Then [K : Q] = 3 coincides to the order of the Galois group
of f(X), so that K must be a splitting field for f . But K ⊆ R, so that
all roots of f(x) are real.

Exercise 2
Let f be an irreducible cubic polynomial over a finite field of char-
acteristic different from 2, 3. Show that its discriminant is a square.

Solution
For a cubic irreducible polynomial in K[X] with discriminant ∆ and
Galois group G, we know that

a) if ∆ is a square in K then G ' A3;
b) if ∆ is not a square in K then G ' S3.

But we also know that the Galois group of a finite extension finite fields
is cyclic. Since S3 is not cyclic, it follows that only case a) is possible.
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Exercise 3
Let K be a subfield of C. Let f(x) = x3 + px + q be an irreducible
polynomial in K[x]. Let α be a root of f(x). Let β = a + bα + cα2 ∈
K(α) \K, with a, b, c ∈ K. Determine the minimal polynomial g(X)
of β over K. Let ∆ be the discriminant of f(X) over K. Show that
K(α)/K is an extension by radicals if and only if −3∆ is a square in
K.

Solution
If β ∈ K(α)\K then K(β) = K(α), so that 1, β, β2 is a basis of K(α) as
a K-vector space. The change of basis matrix transforming coordinates
w.r.t. the basis 1, β, β2 in coordinates w.r.t. the basis 1, α, α2 is given
by

M =

1 a −2bcq + a2

0 b −2bcp− c2q + 2ab
0 c −c2p+ 2ac+ b2


The inverse matrix is

M−1 =
1

bc2p+ c3q + b3

1 ac2p− 2bc2q − a2c− ab2 −2abcp− ac2q + 2b2cq + a2b
0 −c2p+ 2ac+ b2 2bcp+ c2q − 2ab
0 −c b

 .

The coordinates of β3 in the basis 1, α, α2 are given by the vector

T =

 3bc2pq + c3q2 − 6abcq − b3q + a3

3bc2p2 + 2c3pq − 6abcp− 3ac2q − b3p− 3b2cq + 3a2b
+c3p2 − 3ac2p− 3b2cp− 3bc2q + 3a2c+ 3ab2.


Then M−1 · T gives the coordinates of β3 in the basis 1, β, β2:

M−1 · T =

ac2p2 − bc2pq + c3q2 − 2a2cp+ ab2p+ 3abcq − b3q + a3

−c2p2 + 4acp− b2p− 3bcq − 3a2

−2cp+ 3a


Then the minimal polynomial of β over K is

g(X) = X3 + (−2cp+ 3a)X2 + (−c2p2 + 4acp− b2p− 3bcq − 3a2)X+

+ ac2p2 − bc2pq + c3q2 − 2a2cp+ ab2p+ 3abcq − b3q + a3.

(It is also possible to obtain g(X) as the characteristic polynomial of
the multiplication by β.)
It follows that β is a radical if a, b, c satisfy the equations:{

−2cp+ 3a = 0
c2p2 + 4acp− b2p− 3bcq − 3a2 = 0
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that is {
a = 2

3
pc

3pb2 + 9qb− p2 = 0

The second equation has discriminant 81p2 + 12p3 = −3∆; therefore
the above system admits a solution if and only if −3∆ is a square in
K.

Exercise 4
Solve Exercise 14.5 in Garling’s book.

Solution
From 3β2− 3αβ−p = 0 we find α = β− p

3β
; then from α3 +pα+ q = 0

we find 27β6 + 27qβ3 − p3 = 0; then

β3 = −q
2
±
√
q2

4
+
p3

27
.
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Exercise 5

For each of the following polynomials, check irreducibility and give the
Galois group over Q:

a) X3 − 4X − 1;
b) X4 +X + 1;
c) X4 +X3 +X2 +X + 1;
d) X4 +X3 −X2 − 2X − 2.

Solution

a) The polynomial is irreducible, as ±1 are not roots. The dis-
criminant is ∆ = −4(−4)3− 27(−1)2 = 229, not a square in Q.
Thus the Galois group is S3.

b) The polynomial is irreducible: in fact if it was reducible then by
Gauss Lemma it would be a product of two monic polynomials
in Z[X]; then it would be reducible in Fp[X] for every X; but it
easy to see that it is irreducible in F2[X]. The cubic resolvent
is X3− 4X − 1, which was studied at point a): it is irreducible
over Q and the discriminant is 229, not a square in Q. The
Galois group is S4.

c) Put Y = X − 1; then the polynomial is

X5 − 1

X − 1
=

(Y + 1)5 − 1

Y
= Y 4 + 5Y 3 + 10Y 2 + 10Y + 5,

and the latter is irreducible by Eisenstein’s criterion. The dis-
criminant is 125, not a square in Q; and the cubic resolvent
is

X3 +
5

4
X2 − 45

16
X − 25

64
= (X − 5

4
)(X2 +

5

2
X +

5

16
).

The splitting field of the cubic resolvent is M = Q(
√

5), and

X4 +X3 +X2 +X + 1 =

= (X2 +
1 +
√

5

2
X + 1)(X2 +

1−
√

5

2
X + 1)

is reducible over M . Therefore the Galois group is cyclic of
order 4.
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d) The polunomial is reducible:

X4 +X3 −X2 − 2X − 2 =

= (X2 +X + 1)(X2 − 2)

The splitting field over Q is Q(
√
−3,
√

2). The Galois group is
Z2 × Z2.


