Due Tuesday July 30, 2019, at 24:00 Kathmandu time

Exercise 1

Show that if the Galois group of a rational cubic polynomial f(x) is cyclic of order 3 then f(x) has only real roots.

Solution

Since f(x) has degree 3, it has at least one real root α (in fact every complex non-real root must be paired with its complex conjugate). Let $K = \mathbb{Q}(\alpha)$. Then $[K : \mathbb{Q}] = 3$ coincides to the order of the Galois group of f(X), so that K must be a splitting field for f. But $K \subseteq \mathbb{R}$, so that all roots of f(x) are real.

Exercise 2

Let f be an irreducible cubic polynomial over a finite field of characteristic different from 2, 3. Show that its discriminant is a square.

Solution

For a cubic irreducible polynomial in K[X] with discriminant Δ and Galois group G, we know that

- a) if Δ is a square in K then $G \simeq A_3$;
- b) if Δ is not a square in K then $G \simeq S_3$.

But we also know that the Galois group of a finite extension finite fields is cyclic. Since S_3 is not cyclic, it follows that only case a) is possible.

Exercise 3

Let K be a subfield of \mathbb{C} . Let $f(x) = x^3 + px + q$ be an irreducible polynomial in K[x]. Let α be a root of f(x). Let $\beta = a + b\alpha + c\alpha^2 \in K(\alpha) \setminus K$, with $a, b, c \in K$. Determine the minimal polynomial g(X)of β over K. Let Δ be the discriminant of f(X) over K. Show that $K(\alpha)/K$ is an extension by radicals if and only if -3Δ is a square in K.

Solution

If $\beta \in K(\alpha) \setminus K$ then $K(\beta) = K(\alpha)$, so that $1, \beta, \beta^2$ is a basis of $K(\alpha)$ as a K-vector space. The change of basis matrix transforming coordinates w.r.t. the basis $1, \beta, \beta^2$ in coordinates w.r.t. the basis $1, \alpha, \alpha^2$ is given by

$$M = \begin{pmatrix} 1 & a & -2bcq + a^2 \\ 0 & b & -2bcp - c^2q + 2ab \\ 0 & c & -c^2p + 2ac + b^2 \end{pmatrix}$$

The inverse matrix is

$$M^{-1} = \frac{1}{bc^2p + c^3q + b^3} \begin{pmatrix} 1 & ac^2p - 2bc^2q - a^2c - ab^2 & -2abcp - ac^2q + 2b^2cq + a^2b \\ 0 & -c^2p + 2ac + b^2 & 2bcp + c^2q - 2ab \\ 0 & -c & b \end{pmatrix}$$

The coordinates of β^3 in the basis $1, \alpha, \alpha^2$ are given by the vector

$$T = \begin{pmatrix} 3bc^2pq + c^3q^2 - 6abcq - b^3q + a^3\\ 3bc^2p^2 + 2c^3pq - 6abcp - 3ac^2q - b^3p - 3b^2cq + 3a^2b\\ + c^3p^2 - 3ac^2p - 3b^2cp - 3bc^2q + 3a^2c + 3ab^2. \end{pmatrix}$$

Then $M^{-1} \cdot T$ gives the coordinates of β^3 in the basis $1, \beta, \beta^2$:

$$M^{-1} \cdot T = \begin{pmatrix} ac^2p^2 - bc^2pq + c^3q^2 - 2a^2cp + ab^2p + 3abcq - b^3q + a^3 \\ -c^2p^2 + 4acp - b^2p - 3bcq - 3a^2 \\ -2cp + 3a \end{pmatrix}$$

Then the minimal polynomial of β over K is

$$g(X) = X^{3} + (-2cp + 3a)X^{2} + (-c^{2}p^{2} + 4acp - b^{2}p - 3bcq - 3a^{2})X + ac^{2}p^{2} - bc^{2}pq + c^{3}q^{2} - 2a^{2}cp + ab^{2}p + 3abcq - b^{3}q + a^{3}.$$

(It is also possible to obtain g(X) as the characteristic polynomial of the multiplication by β .)

It follows that β is a radical if a, b, c satisfy the equations:

$$\begin{cases} -2cp + 3a = 0\\ c^2p^2 + 4acp - b^2p - 3bcq - 3a^2 = 0 \end{cases}$$

that is

$$\begin{cases} a = \frac{2}{3}pc\\ 3pb^2 + 9qb - p^2 = 0 \end{cases}$$

The second equation has discriminant $81p^2 + 12p^3 = -3\Delta$; therefore the above system admits a solution if and only if -3Δ is a square in K.

Exercise 4

Solve Exercise 14.5 in Garling's book.

Solution

From $3\beta^2 - 3\alpha\beta - p = 0$ we find $\alpha = \beta - \frac{p}{3\beta}$; then from $\alpha^3 + p\alpha + q = 0$ we find $27\beta^6 + 27q\beta^3 - p^3 = 0$; then

$$\beta^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}.$$

Exercise 5

For each of the following polynomials, check irreducibility and give the Galois group over \mathbb{Q} :

a) $X^3 - 4X - 1$; b) $X^4 + X + 1$; c) $X^4 + X^3 + X^2 + X + 1$; d) $X^4 + X^3 - X^2 - 2X - 2$.

Solution

- a) The polynomial is irreducible, as ± 1 are not roots. The discriminant is $\Delta = -4(-4)^3 27(-1)^2 = 229$, not a square in \mathbb{Q} . Thus the Galois group is S_3 .
- b) The polynomial is irreducible: in fact if it was reducible then by Gauss Lemma it would be a product of two monic polynomials in $\mathbb{Z}[X]$; then it would be reducible in $\mathbb{F}_p[X]$ for every X; but it easy to see that it is irreducible in $\mathbb{F}_2[X]$. The cubic resolvent is $X^3 - 4X - 1$, which was studied at point a): it is irreducible over \mathbb{Q} and the discriminant is 229, not a square in \mathbb{Q} . The Galois group is S_4 .
- c) Put Y = X 1; then the polynomial is

$$\frac{X^5 - 1}{X - 1} = \frac{(Y + 1)^5 - 1}{Y} = Y^4 + 5Y^3 + 10Y^2 + 10Y + 5,$$

and the latter is irreducible by Eisenstein's criterion. The discriminant is 125, not a square in \mathbb{Q} ; and the cubic resolvent is

$$X^{3} + \frac{5}{4}X^{2} - \frac{45}{16}X - \frac{25}{64} = (X - \frac{5}{4})(X^{2} + \frac{5}{2}X + \frac{5}{16}).$$

The splitting field of the cubic resolvent is $M = \mathbb{Q}(\sqrt{5})$, and

$$X^{4} + X^{3} + X^{2} + X + 1 =$$

= $(X^{2} + \frac{1 + \sqrt{5}}{2}X + 1)(X^{2} + \frac{1 - \sqrt{5}}{2}X + 1)$

is reducible over M. Therefore the Galois group is cyclic of order 4.

d) The polunomial is reducible:

$$X^{4} + X^{3} - X^{2} - 2X - 2 =$$

= $(X^{2} + X + 1)(X^{2} - 2)$

The splitting field over \mathbb{Q} is $\mathbb{Q}(\sqrt{-3}, \sqrt{2})$. The Galois group is $\mathbb{Z}_2 \times \mathbb{Z}_2$.