NAP 2019 - MODULE V - PROBLEM SET 1 DUE TUESDAY JULY 23, 2019, AT 24:00 KATHMANDU TIME

Justify all answers!

Exercise 1

Let $K_1 = \mathbb{F}_3(\alpha)$, $K_2 = \mathbb{F}_3(\beta)$, where α is a root of $X^2 + 1$ and β is a root of $X^2 + X + 2$.

- a) Find the roots of $X^2 + 1$ in K_2 .
- b) How many isomorphisms are there between K_1 and K_2 ? Construct them explicitly.
- c) Factorize the poynomial $X^9 X$ over \mathbb{F}_3 . How many irreducible polynomials of degree two are there in $\mathbb{F}_3[X]$?

Exercise 2

- a) Prove that $X^6 + X^3 + 1$ is irreducible in $\mathbb{F}_2[X]$.
- b) Let $K = \mathbb{F}_2(\alpha)$ where α is a root of g(X). List the elements of each subfield of K. For each subfield L, determine an element β such that $L = \mathbb{F}_2(\beta)$.
- c) Find elements of order 7 and 9 in K^{\times} . Determine a generator of the multiplicative group K^{\times} .

Exercise 3

Both $g(X) = X^3 - 2$ and $h(X) = X^3 + X^2 + 6X + 5$ are irreducible over \mathbb{F}_7 . Let α be a root of g(X) over \mathbb{F}_7 .

- a) Explain why the polynomial h(X) must have 3 roots in $\mathbb{F}_7(\alpha)$.
- b) Verify that one root is $\alpha^2 + \alpha + 2$.
- c) Find the others two roots, (i.e. write them as \mathbb{F}_7 -linear combinations of $1, \alpha, \alpha^2$).