Example. Let **K** be a field of characteristic not dividing n. Let $a \in \mathbf{K}^*$ and let ξ denote a primitive n^{th} root of 1. Then

- (1) $\mathbf{L} = \mathbf{K}(\xi, \sqrt[n]{a})$ is a Galois extension of **K**.
- (2) There is an injective homomorphism

$$F: Aut_{\mathbf{K}}(\mathbf{L}) \to G := \{ \begin{pmatrix} i & j \\ 0 & 1 \end{pmatrix}, \ i \in \mathbf{Z}_n^*, \ j \in \mathbf{Z}_n \}.$$

(3) The group G is solvable. Therefore $Aut_{\mathbf{K}}(\mathbf{L})$ is solvable too.

Proof. (1) The field \mathbf{L} is the splitting field of the polynomial $f = x^n - a$. If $char(\mathbf{K}) = 0$, this is already sufficient to conclude that $\mathbf{K} \subset \mathbf{L}$ is a Galois extension. Assume now that $char(\mathbf{K}) = p$ and that p does not divide n. The extension $\mathbf{K} \subset \mathbf{L}$ is finite and normal. In order to show that it is Galois, we need to check that it is separable. The zeros of f are $\{\sqrt[n]{a}\xi^j, j \in \mathbf{Z}_n\}$. Since p does not divide n, one has $f' = nx^{n-1} \neq 0$ and gcd(f, f') = 1. In particular all the zeros of f are distinct. Observe that the minimal polynomial of ξ divides $x^n - 1$ while the one of $\sqrt[n]{a}$ divides $x^n - a$. Hence they are separable polynomials, implying that ξ and $\sqrt[n]{a}$ are separable elements. Then, by Garling, Cor.2, page. 84, \mathbf{L} is a separable extension of \mathbf{K} .

(b) An element $\sigma \in Aut_{\mathbf{K}}(\mathbf{L})$ is determined by $\sigma(\xi) = \xi^i$, with $i \in \mathbf{Z}_n^*$ and $\sigma(\sqrt[n]{a}) = \sqrt[n]{a}\xi^j$, with $j \in \mathbf{Z}_n$. So we define the map F by

$$F(\sigma) := \begin{pmatrix} i & j \\ 0 & 1 \end{pmatrix}, \ i \in \mathbf{Z}_n^*, \ j \in \mathbf{Z}_n.$$

- *F* is a homomorphism: given automorphisms σ_1 , determined by $\sigma_1(\xi) = \xi^{i_1}$ and $\sigma_1(\sqrt[n]{a}) = \sqrt[n]{a} \xi^{j_1}$, and σ_2 , determined by $\sigma_2(\xi) = \xi^{i_2}$ and $\sigma_2(\sqrt[n]{a}) = \sqrt[n]{a} \xi^{j_2}$, the composition $\sigma_2 \circ \sigma_1$ is determined by

$$\sigma_2 \circ \sigma_1(\xi) = \xi^{i_1 i_2}, \qquad \sigma_2 \circ \sigma_1(\sqrt[n]{a}) = \sigma_2(\sqrt[n]{a}\xi^{j_1}) = \sqrt[n]{a}\xi^{j_2 + j_1 i_2}.$$

Now it is clear that

$$F(\sigma_2 \circ \sigma_1) = \begin{pmatrix} i_1 i_2 & j_2 + j_1 i_2 \\ 0 & 1 \end{pmatrix} = f(\sigma_2)F(\sigma_1) = \begin{pmatrix} i_2 & j_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} i_1 & j_1 \\ 0 & 1 \end{pmatrix}.$$

Note that $gcd(i_1i_2, n) = 1$.

- ker(F) = {*id*}: in fact $F(\sigma) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ if and only if $\sigma(\xi) = \xi$ and $\sigma(\sqrt[n]{a}) = \sqrt[n]{a}$, if and only if $\sigma = id$.

- the image of $Aut_{\mathbf{K}}(\mathbf{L})$ in G depends on the field \mathbf{K} .

(c) The determinant det: $G \to \mathbf{Z}_n^*$ is a surjective homomorphism with kernel the abelian normal subgroup of G

$$H := \left\{ \begin{pmatrix} 1 & j \\ 0 & 1 \end{pmatrix}, \ j \in \mathbf{Z}_n. \right.$$

In particular, $G/H \cong \mathbb{Z}_n^*$ is abelian. This proves that G is solvable. It also implies that $Aut_{\mathbf{K}}(\mathbf{L})$, which isomorphic to a subgroup of G, is solvable.

Example. Let $\mathbf{L} = \mathbf{K}(\sqrt[4]{2}, \xi_4) = \mathbf{K}(\sqrt[4]{2}, \sqrt{-1})$ be the splitting field of $f = X^4 - 2$ over \mathbf{K} . Let's observe how the image of $Aut_{\mathbf{K}}(\mathbf{L})$ in G changes varying the field \mathbf{K} . (a) $\mathbf{K} = \mathbf{Q}$, $\mathbf{L} = \mathbf{Q}(\sqrt[4]{2}, \sqrt{-1})$, $[\mathbf{L} : \mathbf{K}] = 8$, $F(Aut_{\mathbf{K}}(\mathbf{L})) = G$; (b) $\mathbf{K} = \mathbf{R}$, $\mathbf{L} = \mathbf{C}$, $[\mathbf{L} : \mathbf{K}] = 2$, $F(Aut_{\mathbf{K}}(\mathbf{L})) = \{\begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}, i \in \mathbf{Z}_4^*\} \cong \mathbf{Z}_2$;

$$\begin{aligned} \text{(c)} \ \mathbf{K} &= \mathbf{C}, \quad \mathbf{L} = \mathbf{C} \quad [\mathbf{L} : \mathbf{K}] = 1, \quad F(Aut_{\mathbf{K}}(\mathbf{L})) = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}; \\ \text{(d)} \ \mathbf{K} &= \mathbf{Q}(\sqrt{2}), \quad \mathbf{L} = \mathbf{Q}(\sqrt{2})(\sqrt{\sqrt{2}}, \sqrt{-1}) \quad [\mathbf{L} : \mathbf{K}] = 4, \\ F(Aut_{\mathbf{K}}(\mathbf{L})) &= \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \}. \end{aligned}$$

Solving polynomial equations by radicals.

We briefly discussed an old question answered by Galois theory:

Given a polynomial $f \in \mathbf{Q}[x]$ of degree n, is it always possible to express the solutions of the equation f = 0 as radical functions of the coefficients of f?

When this is the case, we call f solvable. Every polynomial of degree n = 2, 3, 4 is solvable, by the well known formulas. Around 1800, "using Galois theory" it was proved that similar formulas do not exist in general for $n \ge 5$.

Given a polynomial $f \in \mathbf{Q}[x]$, denote by G_f the Galois group of its splitting field \mathbf{K}_f . Then f is solvable if and only if the group G_f is solvable in the sense of group theory.

The symmetric group S_n is not solvable, for $n \ge 5$. Hence any polynomial f with with Galois group $G_f = S_n$ is not solvable. A random polynomial f has most probably Galois group $G_f = S_n$.