We concluded the proof that:

if $\mathbf{K} \subset \mathbf{E} \subset \mathbf{L}$ are field extensions, then

$$#Aut_{\mathbf{K}}(\mathbf{L}) \ge [\mathbf{L}:\mathbf{E}].$$

Cyclotomic polynomials.

(1) The inductive definition:

$$\prod_{d|n} \Phi_d = x^n - 1;$$

$$\begin{split} \Phi_1 &= x-1; \\ \Phi_1 \Phi_2 &= x^2-1 \implies \Phi_2 = x+1; \\ \Phi_1 \Phi_2 \Phi_3 &= x^3-1 \implies \Phi_3 = x^2+x+1; \end{split}$$

(2) Alternative definition

$$\Phi_n = \prod_{\substack{\xi \text{ prim.}\\n^{th} \text{ root of } 1}} (z - \xi)$$

• In definition (1), cyclotomic polynomials are rational functions; in definition (2) they are polynomials with complex coefficients. The two definitions coincide and

$$\Phi_n \in \mathbf{Q}(x) \cap \mathbf{C}[x] = \mathbf{Q}[x]$$

is a polynomial of degree $\varphi(n)$.

• (Kronecker ~ 1880) $\Phi_n(x)$ is irreducible in $\mathbf{Q}[x]$.

The construction problem.

• A complex number α is constructible with ruler and compass, starting from 0 and 1, if and only if $\mathbf{Q}(\alpha)$ is a finite extension of \mathbf{Q} , which is a tower of quadratic extensions

$$\mathbf{Q} = \mathbf{F}_0 \subset \mathbf{F}_1 \subset \ldots \subset \mathbf{F}_m = \mathbf{Q}(\alpha), \qquad [\mathbf{F}_{i+1} : \mathbf{F}_i] = 2.$$

In particular, $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 2^m$ (note however that $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 2^m$ is not sufficient for the existence of a tower of quadratic extensions as above).

• A regular polygon of n vertices is constructible with ruler and compass if and only if ξ_n , a primitive n^{th} root of 1, is constructible. In particular, $\varphi(n) = 2^m$ and $n = 2^k \prod p_h$, where p_h denotes a Fermat prime.