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e Let K c E c L be field extensions. Assume that K c L is Galois (finite, normal,
separable), with Galois group G := Autk(L). Then K c E is Galois if and only if
E = LY, for some H normal subgroup of G.

Both extensions K ¢ E and E < L are finite and always separable; the exten-
sion E c L is always normal. So all is left to prove is that

e the extension K — E is normal if and only if E = L¥ | for some normal subgroup
H of G.

From Galois theory we know that E = L¥ | for some H = Autg(L).

- Assume K c E is normal. Fix h € H and let g € Autk (L) be an aritrary element.
For z € E, consider ghg~!(z) = g(h(g~'(z))). Let f, € K[z] be the minimal
polynomial of z. Then g~—!(z) is a zero of f, and by the normality of E is an
elements of E. Now it is clear that g(h(g~!(x))) = x. Since x € E is arbitrary, then
ghg~' € H and H is normal.

- Conversely, assume that H is normal. Then ghg~' € H and for all x € E, one has
g(h(g71(x))) = z or equivalently h(g~!(z)) = g~ *(z) € E. Since g~!(x) is a zero
of the minimal polynomial f, of x, this says that all such zeros lie in E, and E is
normal.

e If K c E is Galois, then the Galois group Autk (E) is isomorphic to G/H.

Consider the restriction homomorphism ¥: G = Autk (L) — Autk (E).

To prove that ¥ is well defined, we need to show that g(z) € E, for all 2 € E and
g € G. As we already observed, g(z) is a zero of the minimal polynomial f, of z,
and by the normality of K < E, it lies in E.

The surjectivity ¥, follows from Thm.7.5 is Garling, ensuring that g € Autk(E)
can be extended to an automorphism in Autk(L).

Finally, ker(¥) = {g € G : g(x) = z, Vo € E}. But this is precisely H = Autg(L),
and the statement follows.

e Remark. Consider Q ¢ Q(¥/2) < Q(¥/2,w). As we already saw the exten-
sion Q < Q(+4/2) is not normal. Also, if we choose the bijection

V21, Vo2w—2, V20?3,

then the subfield Q(4/2) is the fixed fiel of ((23)) in Sz, which is not a normal
subgroup of Ss.

e Example. Every quadratic extension K < L is normal.
Let a be an element of L and let f € K[x] be its minimum polynomial f = 2%+az+b.
Let’s check that if « is a zero of f, then —« — a is the other zero:

(X -a)(X+a+a)=X*+(—a+a+a)X +a(-a—a) = X?+aX +b.

Hence f factors completely in L[X], proving that K < L is normal.

e Example. Every subgroup H c G of index 2 is normal.

If H < G has index 2, then G = H ugH = Hu Hg. So gH = Hyg, for all g € G.
Hence gHg~' = H. If we have a Galois extension K — L, with Galois group G,
then this confirms that the quadratic extension K < L is normal.

e Example. Let K be a field of characteristic p.
Consider the polynomial f = 2P — x + a, for a € K. Then
- if f has one zero in an extension E of K, then all zeros of f are in K(a) c E.
- let a be a zero of f in E. Then K c K(«) is a Galois extension, and the Galois
group Autk (K(«)) is isomorphic to a subgroup of Z,,.
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- if f has no zero in K, then it is irreducible in K[z]. In particular, if a € Zy, then
f is irreducible in Zy[x].
-If a € E is a zero of f, one ca see that a + b is a zero of f if and only if

(a+b)P —(a+b)+a=aP —a+a+bP —-b=0 < beZ,

Hence o, + 1,..., a0 + (p — 1) are the p distinct zeros of f: it is clear that they all
lie in the same extension as a.

- Consider the extension K < K(a) < E. From what we juste showed, K(a) is a
splitting fired for f. Hence it is a Galois extension of K. Indeed [K(«) : K] < p;
moreover, since the minimum polynomial of a divides f, then all its zeros are
distinct and lie in K(a).

Consider now the map

F: Autk (K(a)) —> Z,, ¢ — b,

where ¢ indicates the automorphism determined by the condition ¢p(a) = a + b.
The map F is a homomorphism: ¢y © ¢, = ¢pi.. Morever it is injective: F(¢p) =0
iff b =0 and ¢g = id.
Then Autk (K («)) is isomorphic to a subgroup of Z,. As p is prime, such subgroup
is either {0} or Z,. If a € K, then we are in the first case.
- If f has no zero in K, and this is the case when o ¢ K, then Autk (K (o)) = Z,
and

#Autk (K (o)) = [K(a) : K].

In particular f is necessarily irreducible.

th_root of 1 and n

e Example. The extension Q < Q(&), where ¢ is a primitive n
is not necessarily prime.

The element ¢ is a zero of the n'* cyclotomic polynomial ®,,, which is irreducible
of degree ¢(n) := #Z* in Q[z] (here ¢ denotes the Euler ¢ function). All other

zeros of ®,,, which are primitive roots of 1, are of the form £™, with ged(m,n) = 1.
The degree of this extension is [Q(€) : Q] = ¢(n).

The Galois group: there is a group isomorphism Autq(Q(§)) — Z}, given by
¢m +— m, where ¢,, is the automorphism of Q(¢) determined by ¢,,(§) = £™.
Recall that, being an automorphism, ¢,, preserves the order of the elements and that
order(€™) = order(§) = n iff ged(m,n) = 1. Also note that, if ged(m,n) = d > 1,
then ¢y, (1) = ¢, (6™ = 1, meaning that ¢,, is not bijective.

e Example. The extension Q = Q(¢), where ¢ is a primitive 12t"-root of 1.

The element ¢ is a zero of the 12" cyclotomic polynomial ®15 = 2* — 22 + 1,
irreducible in Q[z], of degree ¢(12) = 4.

The degree of this extension is [Q(¢) : Q] = 4.

The Galois group, Autq(Q(§)) = ZT, = Zy x Zj, is not cyclic and contains 3
subgroups isomorphic to Zs, namely Hy = {(id, ¢5), Hy = {id, ¢7), Hz = {id, ¢11).
The fixed subfield of each subgroup corresponds to a quadratic extension of Q.

- QO™ = Q)" = Q(v3): use the fact that & + g1 (¢) = &+ = £+ is an
invariant element. Taking & = e2™/'2, one has £ + £ = 2cos(7/6) = v/3. Note that
the invariant element £ - ¢11(§) = 1, so it does not help us in determining the fixed
subfield.

- Q& = Q€)% = Q(i): use the fact that & + ¢5(£) is an invariant element and
that €5 — €3 + ¢ = 0. Hence £ + £° = £3. Taking € = €*™/12, one has €% = ™2 = i,
Note that the invariant element ¢ - ¢5(¢) = &5 = —1, so it does not help us in
determining the fixed subfield.

- QO = Q(&)?" = Q(w), where w is a primitive cubic root of 1: use the fact
that & - ¢7(€) = €% is an invariant element. Taking & = €2™/12, one has €% = e*7/3,
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which is a primitive cubic root of 1. Note that the invariant element & + ¢7(£) = 0,
S0 it does not help us in determining the fixed subfield.



