Nepal Algebra Project 2019. Module 4. Lecture 4 July 8, 2019, 18:00-19:30.

• Let **K** be a field. The *formal derivative* f' of a polynomial $f = \sum_n a_n x^n \in \mathbf{K}[x]$ is by definition

$$f' := \sum n a_n x^{n-1}$$

It has all the properties of the usual derivation of functions: $(\alpha f + \beta g)' = \alpha f' + \beta g'$, for all $f, g \in K[x]$ and $\alpha, \beta \in K$; (fg)' = f'g + fg', for all $f, g \in K[x]$.

• Let **K** be a field. Let f be a polynomial in $\mathbf{K}[x]$ and let α be a zero of f in some extension **L** of **K**. Then α is a double zero of f if and only if $f'(\alpha) = 0$.

• The separability issue.

Let K be a field of characteristic 0. Examples of such fields are $K = \mathbf{Q}$, \mathbf{R} , \mathbf{C} , $\mathbf{Q}(x)$, $\mathbf{Q}[x]/(f)$, where $f \in \mathbf{Q}[x]$ is an irreducible polynomial, etc...

• Let **K** be a field, with $char(\mathbf{K}) = 0$; let f be an irreducible polynomial in $\mathbf{K}[x]$. Then f is necessarily separable. As a consequence, every extension $\mathbf{K} \subset \mathbf{L}$ is necessarily separable.

Let **K** be a field of characteristic p > 0. Then **K** admits a distinguished endomorphism, the *Frobenius endomorphism*,

 $\phi \colon \mathbf{K} \to \mathbf{K}, \quad x \mapsto \phi(x) = x^p.$

 ϕ is necessarily injective, but possibly not surjective.

If ϕ is surjective, the field is called *perfect*.

Every finite field is perfect.

Every algebraic extension \mathbf{L} of a perfect field \mathbf{K} is separable.

On the fundamental theorem of Galois theory.

• Let $\mathbf{K} \subset \mathbf{L}$ be a field extension. Let $G := Aut_{\mathbf{K}}(\mathbf{L})$ be the Galois group. Then

 $#G \leq [\mathbf{L} : \mathbf{K}].$