Nepal Algebra Project 2019. Module 4. Lecture 3 July 5, 2019, 16:30-18:00.

• The Fundamental Theorem of Galois Theory.

(cf. Garling, Thm. 11.8, page 97).

Further discussion of the statement of the fundamental theorem of Galois theory.

• More about example (2) of Lecture 1:

$$\mathbf{Q} \subset \mathbf{Q}(\sqrt[3]{2}, \omega),$$

where $\omega = e^{2\pi i/3} = \frac{1}{2}(-1 + \sqrt{-3})$ is a primitive cube root of 1.

Fix a bijection between the sets $\{\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2\}$ and $\{1, 2, 3\}$, for example

$$\sqrt[3]{2} \mapsto 1, \quad \sqrt[3]{2}\omega \mapsto 2, \quad \sqrt[3]{2}\omega^2 \mapsto 3.$$

Then we can compute precisely the fixed fields of the subgroups H of G: The subgroup A_3 has index 2 in S_3 and its fixed field is $\mathbf{Q}(\omega)$, which has degree 2 over \mathbf{Q} ;

the fixed field of $\langle (23) \rangle$ is $\mathbf{Q}(\sqrt[3]{2})$; the fixed field of $\langle (13) \rangle$ is $\mathbf{Q}(\sqrt[3]{2}\omega)$; the fixed field of $\langle (12) \rangle$ is $\mathbf{Q}(\sqrt[3]{2}\omega^2)$;

• The separability issue.

A field **K** is said to have $char(\mathbf{K}) = p$ (necessarily a prime number) if

$$\underbrace{1+1+\ldots+1}_{p \text{ times}} = 0$$

Examples of such fields **K** are:

 $\mathbf{Z}_p, \ \mathbf{Z}_p(x) = \{ \frac{f}{g} \mid f, g \in \mathbf{Z}_p[x], \ g \neq 0 \}, \ \mathbf{Z}_p[x]/(f), \text{ with } f \in \mathbf{Z}_p[x] \text{ irreducible.}$

Let **K** be a field of characteristic p. Then there exist inseparable extensions of $\mathbf{K}(T)$. Example. Let **K** be the field $\mathbf{Z}_p(T)$. Consider the monic polynomial

$$f(x) = x^p - T \in \mathbf{Z}_p(T)[x].$$

- f is irreducible: this follows by Eisenstein criterion with respect to the prime $T \in \mathbf{Z}_p[T]$, and then by Gauss lemma.

-*f* is not separable: let α be a zero of *f*, i.e. an element $\alpha = \sqrt[p]{T}$, in some extension **L** of **K**. But in characteristic *p* one has $x^p - T = x^p - \alpha^p = (x - \alpha)^p$. In other words, all roots of *f* in **L** are the same.

As a consequence, the field **L** is an inseparable extension of **K**: it contains the element α , whose minimal polynomial $x^p - T$ is not separable.