The Fundamental Theorem of Galois Theory.

(cf. Garling, Thm. 11.8, page 97).

- Recalled the basic notions involved in the statement of the Theorem.
- Discussed the statement of the theorem and its significance.
- Examples of the Galois correspondence:

(1)
$$\mathbf{R} \subset \mathbf{C}$$

 $Aut_{\mathbf{R}}(\mathbf{C}) = \{id, \phi(a+ib) = a-ib\} \cong \mathbf{Z}_2.$

(2)
$$\mathbf{Q} \subset \mathbf{Q}(\sqrt[3]{2}, \omega)$$
, where $\omega = e^{2\pi i/3} = \frac{1}{2}(-1 + \sqrt{-3})$ is a primitive cube root of 1. $[\mathbf{Q}(\sqrt[3]{2}, \omega) : \mathbf{Q}] = 6;$ $G := Aut_{\mathbf{Q}}(\mathbf{Q}(\sqrt[3]{2}, \omega)) \cong \mathcal{S}_3.$

The subgroups H of G are:

1,
$$S_3$$
, $A_3 = \langle (123), (132) \rangle$, $\langle (12) \rangle$, $\langle (13) \rangle$, $\langle (23) \rangle$.

The subgroup A_3 has index 2 in S_3 and its fixed field $\mathbf{Q}(\omega)$ has degree 2 over \mathbf{Q} ; Each of the subgroups generated by a 2-cycle has index 3 in S_3 and its fixed field has degree 3 over \mathbf{Q} . These subfields are $\mathbf{Q}(\sqrt[3]{2})$, $\mathbf{Q}(\sqrt[3]{2}\omega)$, $\mathbf{Q}(\sqrt[3]{2}\omega^2)$.