NAP 2019, MODULE-III, LECTURE 7: JUNE 12, 2019

SHIV PRAKASH PATEL & SHREEDEVI MASUTI

In the last lecture we have seen that if L : K is normal and M is an intermediate field, then M : K need not be normal. The following theorem gives a necessary and sufficient conditions for M : K to be normal. We remark that the theorem is true even if L : K is not finite. In the lecture we proved the theorem for finite extensions.

Theorem 1. Suppose that *L* : *K* is a finite normal extension and that *M* is an intermediate field. Then following are equivalent:

- (a) M : K is normal;
- (b) if σ is an automorphism of L which fixes K, then $\sigma(M) \subseteq M$;
- (c) if σ is an automorphism of L which fixes K, then $\sigma(M) = M$.

We then started Chapter 10 on Separability. We defined separable extensions and proved few properties of these extensions.

Definition 2. (1) Let $f \in K[X]$ be an irreducible polynomial of degree *n*. Let L : K be a splitting field extension for *f*. Then

$$f = \lambda(X - \alpha_1) \cdots (X - \alpha_n)$$

for some $\lambda \in K$ and $\alpha_1, \ldots, \alpha_n \in L$. We say that f is *separable* (over K) if $\alpha_1, \ldots, \alpha_n$ are distinct. (2) Let $f \in K[X]$ be an arbitrary polynomial. Since K[X] is a UFD, there exist irreducible polynomials f_1, \ldots, f_k and positive integers n_1, \ldots, n_k such that

$$f = u f_1^{n_1} \cdots f_k^{n_k}$$

where *u* is a unit in K[X]. We say that *f* is *separable* if each f_i is separable. (Note that since K[X] is a UFD, f'_is are unique upto unit and permutation. Hence definition is well-defined).

(3) Let *L* : *K* be an extension. An element $\alpha \in L$ is *separable* (over *K*) if α is algebraic over *K* and its minimal polynomial over *K* is separable. An extension *L* : *K* is separable if each $\alpha \in L$ is separable.

We discussed some examples and non-examples of separable extensions.

Example 3. (1) Consider the polynomial $f = X^2 - 2$ over \mathbb{Q} . Since f has no roots in \mathbb{Q} , f is irreducible over \mathbb{Q} . Moreover, $f = (X - \sqrt{2})(X + \sqrt{2})$ in $\mathbb{Q}(\sqrt{2})[X]$ and hence its roots are distinct. Thus f is separable over \mathbb{Q} .

(2) Consider $f = (X - 1)^2 \in \mathbb{Q}[X]$. Since the irreducible factor X - 1 of f is separable, f is separable over \mathbb{Q} .

(3) Consider an extension $\mathbb{Q}(\sqrt{2}) : \mathbb{Q}$. Then $\sqrt{2}$ is separable over \mathbb{Q} since its minimal polynomial is $X^2 - 2$ and it has distinct roots in $\mathbb{Q}(\sqrt{2})$. Is $\mathbb{Q}(\sqrt{2}) : \mathbb{Q}$ separable ? For this we need to verify that each $\alpha = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ is separable over \mathbb{Q} . If b = 0, then α is clearly separable over \mathbb{Q} . Assume that $b \neq 0$. In this case the minimal polynomial for α over \mathbb{Q} is $X^2 - 2aX + (a^2 - 2b^2) = (X - \alpha)(X + \beta)$ where $\beta = a - b\sqrt{2}$. Since α and β are distinct, $\mathbb{Q}(\sqrt{2}) : \mathbb{Q}$ separable over \mathbb{Q} .

(4) Consider an extension $\mathbb{Z}_p(t^{1/p})$: $\mathbb{Z}_p(t)$ where *t* is an indeterminate over \mathbb{Z}_p . Then $t^{1/p}$ satisfies the polynomial $X^p - t$ over $\mathbb{Z}_p(t)$. In fact, $X^p - t$ is the minimal polynomial for $t^{1/p}$ over

 $\mathbb{Z}_p(t)$. But $X^p - t = (X^p - t^{1/p})^p$ in $\mathbb{Z}_p(t^{1/p})[X]$ which has repeated roots. Therefore $t^{1/p}$ is not separable over $Z_p(t)$.

Unlike in the normal case, in the separable case if L : K is separable and M is intermediate field, then both L : M and M : K are separable. We proved this theorem.

Theorem 4. Suppose that L : K is separable and that M is an intermediate field. Then L : M and M : K are separable.

Let L : K be a finite extension. We know that the number of automorphisms of L which fixes K is finite. How many such automorphisms of L are possible? Our goal is to answer this when L : K is normal and separable. As a first step in this direction we proved the following result for simple algebraic extensions.

Theorem 5. Suppose that $K(\alpha)$: K is a simple algebraic extension of degree d and j : $K \longrightarrow L$ is a monomorphism. If α is separable over K and $j(m_{\alpha})$ splits over L (here m_{α} is the minimal polynomial for α over K) then there are exactly d monomorphisms from $K(\alpha)$ to L extending j; otherwise there are fewer than d such monomorphisms.