NAP 2019, MODULE-III, LECTURE 6: JUNE 11, 2019

SHIV PRAKASH PATEL & SHREEDEVI MASUTI

* Since we are leaving in the morning of June 14 (Friday), we took a class on June 11 (Tuesday) instead of June 14.

In this lecture we discussed further properties of normal extensions. First we completed a proof of the following theorem and then discussed its consequences.

Theorem 1. An extension L : K is normal if and only if it is a splitting field extension for some $S \subseteq K[X]$.

If *L* : *K* is finite, then *S* can be chosen to be a singleton set.

Corollary 2. A finite extension L : K is normal if and only if L : K is a splitting field extension for some $g \in K[X]$.

We defined a normal closure and proved its existence in the case *L* : *K* is finite.

Definition 3. Suppose that L : K is an algebraic. An extension N : L is a *normal closure* for L : K if N : K is normal and if $L \subseteq L' \subseteq N$ such that L' : K is normal, then N = L'.

Theorem 4. If *L* : *K* is finite, then it has a normal closure.

Example 5. Consider an extension L : K where $L = \mathbb{Q}(\sqrt[3]{2})$ and $K = \mathbb{Q}$. Then $\mathbb{Q}(\sqrt[3]{2}, \omega)$ where ω is a cube root of unity is a normal closure of L : K.

Suppose *L* : *K* is a normal extension and *M* is an intermediate field. Is *L* : *M* normal ? What can you say about *M* : *K* ? The following corollary gives an affirmative answer to the first question.

Corollary 6. If L : K is normal and M is an intermediate field, then L : M is normal.

However, if L : K is normal and M is an intermediate field, then M : K need not be normal. We gave an example to illustrate this.

Example 7. Let $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where ω is a cube root of unity and $K = \mathbb{Q}$. Then L : K is normal. Consider $K \subseteq M := \mathbb{Q}(\sqrt[3]{2}) \subseteq L$. Then M : K is not normal.