NAP 2019, MODULE-III, LECTURE 5: JUNE 10, 2019

SHIV PRAKASH PATEL & SHREEDEVI MASUTI

In this lecture we discussed one of the important properties of field extensions, namely *normal extensions*.

Definition 1. An extension *L* : *K* is said to be normal if

(1) L : K is algebraic;

(2) for every $\alpha \in L$, the minimal polynomial of α over K splits over L. Equivalently, every irreducible polynomial $f \in K[X]$ either splits over L or has no roots in L.

We discussed some examples and non-examples of normal extensions.

- **Example 2.** (a) Every quadratic extension L : K is normal. (An extension is quadratic if [L : K] = 2).
 - (b) Let $L = \mathbb{Q}(\sqrt[3]{2})$ and $K = \mathbb{Q}$. Then L : K is not normal because the polynomial $X^3 2$ is irreducible over \mathbb{Q} , but its complex roots do not belong to L.

Remark 3. (1) The word "irreducible" in (2) of Definition 1 is necessary. For example, let $L = \mathbb{Q}(\sqrt{2})$ and $K = \mathbb{Q}$. Then L : K is normal. Consider $f(X) = (X^2 - 2)(X^2 - 3)$. Then f(X) has a root in L, but it does not split in L.

(2) The extension *L* : *K* in Definition 1 need not be finite.

Suppose L : K is a splitting field extension of $f \in K[X]$ over K. Then $L = K(r_1, ..., r_n)$ where r_i are the roots of f. Is L : K normal ? Clearly, L : K is algebraic. Moreover, for each r_i , the minimal polynomial of r_i over K splits in L. But we need to verify (2) of Definition 1 for each $\alpha \in L$. In the next theorem we will prove that the extension L : K is indeed a normal extension. For this we need to extend the definition of a splitting field.

Definition 4. Let $S \subseteq K[X]$ be a subset (*S* need not be finite). We say L : K is a splitting field extension for *S* if

(1) every polynomial $f \in S$ splits over *L*;

(2) if $K \subseteq L' \subseteq L$ and each polynomial $f \in S$ splits in L', then L = L'.

We stated the following theorem and proved "only if" part of this.

Theorem 5. An extension L : K is normal if and only if it is a splitting field extension for some $S \subseteq K[X]$.

Remark 6. In general, verifying an extension is normal or not is a difficult task. Theorem 5 can be effective to prove that an extension is normal in some cases. For example, let $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where ω is a cube root of unity and $K = \mathbb{Q}$. Then L : K is normal because L is a splitting field of $X^3 - 2$.

Some books, define normal extensions using Theorem 5. Namely, an extension L : K is normal if L is a splitting field extension for some subset S in K[X].