NAP 2019, MODULE-III, LECTURE # 1: JUNE 3, 2019

SHIV PRAKASH PATEL & SHREEDEVI MASUTI

Theorem 1 (Fundamental theorem of Algebra - FTA). Let $f(X) \in \mathbb{C}[X]$ be a non-constant polynomial over the field \mathbb{C} . Then f(X) has a root in \mathbb{C} . Equivalently, all the roots of f(X) are in \mathbb{C} .

Note that $\mathbb{Q}[X] \subset \mathbb{C}[X]$, since $\mathbb{Q} \subset \mathbb{C}$. For $f(X) \in \mathbb{Q}[X]$, we have $f(X) \in \mathbb{C}[X]$ then by FTA there exists $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ and $\lambda \in \mathbb{Q}$ such that

$$f(X) = \lambda(X - \alpha_1) \cdots (X - \alpha_n).$$

Note that each α_i is algebraic over \mathbb{Q} , since $f(\alpha_i) = 0$. Take $L = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$ then $[L : \mathbb{Q}] < \infty$. The polynomial f(X) factorizes into linear factors over the field *L*.

Remark: For a given polynomial $f(X) \in \mathbb{Q}[X]$ if we wish to factorize it into linear factors then there is a finite algebraic extension $L : \mathbb{Q}$ over which it can be done. All of \mathbb{C} is not needed for this purpose. Of course, the field *L* depends on the given polynomial f(X). We coud show the existence of *L* for a given polynomial $f(X) \in \mathbb{Q}[X]$ because of the FTA.

Today's Aim: Our aim is to construct a finite algebraic extension L : K for a given $f(X) \in K[X]$ such that f(X) factorizes into linear factors over L.

Definition 2. Let *K* be a field and *L* : *K* an extension. Let $f(X) \in K[X]$. We say f(X) **splits over** *L* if we can write

$$f(X) = \lambda(X - \alpha_1) \cdots , (X - \alpha_n)$$

where $\alpha_1, \cdots, \alpha_n \in L$ and $\lambda \in K$.

Definition 3. Let *K* be a field and L : K an extension. Let $f(X) \in K[X]$. We say that L : K is a splitting field extension for f(X) over *K* (or *L* is a splitting field for f(X) when *K* is clear from the context) if

- (a) f(X) splits over *L* and,
- (b) there is no proper subfield $L' \subset L$ containing *K* such that f(X) splits over L'.

Example 4. Consider $X^2 - 2 \in \mathbb{Q}[X]$. Then $\mathbb{Q}(\sqrt{2}) : Q$ is a splitting field extension for $X^2 - 2$. Note that the $X^2 - 2$ splits over $\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{2}, \pi), \mathbb{R}, \mathbb{C}$ etc. but these are not the splitting field extension for $X^2 - 2 \in \mathbb{Q}[X]$.

We achieve our aim by discussing the theorems below with proof.

Theorem 5. Suppose that L : K is an extension and that a polynomial $f(X) \in K[x]$ splits over L as $f(X) = \lambda(X - \alpha_1) \cdots , (X - \alpha_n)$. Then $K(\alpha_1, \cdots, \alpha_n)$ is a splitting field for f(X).

Theorem 6. Suppose that $f(X) \in K[x]$ is irreducible polynomial of degree n. Then there is a simple algebraic extension $K(\alpha) : K$ such that $[K(\alpha) : K] = n$ and $f(\alpha) = 0$.

Theorem 7. Suppose that $f(X) \in K[x]$. Then there exists a splitting field extension L : K for f(X), with $[L:K] \le n!$.