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NAP 2019, MODULE-III, SOLUTIONS OF EXERCISE SET 2

SHIV PRAKASH PATEL & SHREEDEVI MASUTI

* Here the references referes to the Garling’s book on Galois theory.

Exercise 9.2 from the book.
Solution: Let L : K be algebraic. Set

M := K(a € L : the minimal polynomial of « over K splitsin L).

We claim that M is the greatest intermediate field of L for which M : K is normal. Let &« € M
and m be the minimal polynomial of « over K. Let H be a splitting field of m and p € H be
another root of m. As m splits in L, B € L. Since the minimal polynomial of j is m itself and m
splitsin L, B € M. Thus M : K is normal.

Now suppose let M’ be an intermediate field such that M’ : K is normal. Then for any
a € M’ the minimal polynomial of & over K splits in M’ and hence in L. Therefore « € M.
Hence M is the greatest intermediate field of L for which M : K is normal.

Exercise 9.3 from the book.

Solution: First we prove that K(M;, M) : Kis normal. By Theorem 9.1 M; : K (resp. M; : K) is
a splitting field extension for some S; C K[X] (resp. S» C K[X]). Define S := {fg: f € S1,8 €
S»} and let M C L be the splitting field extension of S over K. (Since for every f € S; (resp.
g € S2), f splits in M (resp. M), fg splits in L. Hence there exits a splitting field M C L of S).
We claim that M = K(Mj, My). Since for every f € S; the polynomial f splits in M, M; C M.
Similarly, M, € M. Hence K(M;, M) C M. Moreover, if M' C Lis any other intermediate
field containing M; and M, then for every f € S1, ¢ € Sy, fg splits in M'. Hence M C M'.
Thus M is the smallest field containing M; and M, which implies that M = K(M;, Ma).

Now we prove that M; N M, : K is normal. Clearly, M; N M, : K is algebraic. Let a €
M; N M; and m be the minimal polynomial of x over K. As M; : K and M, : K are normal,
m splits over M; and M>. Hence all the roots of m are in M; N M, and thus M; N M, : K is
normal.

Prove Exercise 9.4 of the book in the case L : K is finite.

Solution: Let L : K be finite and N : L be a normal closure of L : K. First we prove that
N : K is finite. Let L = K(ay,...,a,) and m,, be the minimal polynomial of «; over K. Set
g = my, ...m,,. Let M be the splitting field of g over K. Then M : K is a finite normal extension.
Consider a monomorphismi : L — N defined asi(l) =l for! € L. Theni(g) = g.Since N : K
is normal, each m,, splits over N and so does g splits over N. Therefore by Theorem 7.5 i can
be extended to a monomorphism ¢ : M — N. As M : K is normal, (M) : K is a normal
extension. Since N : L is the normal closure of L : K, ¢(M) = N and hence in particular, N : K
is a splitting field extension of 0'(g) = g.

Now, let N’ be another normal closure of L : K. Consider a monomorphism i : L — N’
defined as i’(I) = I for I € L. Then i’(g) = g. Since N’ : K is normal, each m,, splits over N’
and so does g splits over N'. Therefore i’ can be extended to a monomorphism j : N — N'.
Then j(N) : K is a normal extension. As N’ : L is a normal closure of L : K, j(N) = N" and
hence j is an isomorphism onto N'.
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(4) Let K € M C L be an extension of fields such that M : Kand L : M is normal. Is L : K normal
? If so, prove this or else give a counter-example.
Solution: No, L : K need not be normal. Let . = Q(+v/2), M = Q(v/2) and K = Q. Then L : M
and M : K are quadratic extensions and hence are normal. But L : K is not normal because the
minimal polynomial of v/2 over Q is X* — 2 which doesn’t split in L.

(5) Find the normal closure for the following field extensions: (a) Q(\”ﬁ) : Q where p is a prime;
(b) Z3(a) : Zz wherea® —a+1=0
Solution: (a) Note that the minimal polynomial of a := {/2 over Qis X? — 2. Let w € C be the
p-th root of unity. Then o, wa, w?a, ..., wP o are all the distinct roots of X? — 2. Hence we need
to add w in the normal closure of Q({/2) : Q. We prove that in fact Q({/2,w) : Q({/2) is the
normal closure of Q({/2) : Q. Since Q({/2, w) : Q is the splitting field of X? — 2, Q(¥/2,w) : Q
is a normal extension.

Now suppose Q({/2) C M C Q(%/2,w) is a tower and M : Q is normal. Then since X? — 2
is irreducible over Q it splits over M and hence {/2, w € M. Thus M = Q({/2, w).
(b) We prove that Z3(«) : Z3 is normal and hence its normal closure is itself. Since X° — X +

1 has no roots over Zj, it is irreducible over Zs. Moreover, if « is a root of X3 — X + 1, then
«+ 1 and a + 2 are also the roots of X> — X + 1. Hence Zj3(a) : Zj is a splitting field extension
of X3 — X + 1 and thus Z3(a) : Z3 is normal.

(6) Let L : K be a finite normal extension. Prove that the number of automorphisms of L which
fixes K is at most [L : K].
Solution: Let L = K(ay,...,«,) and m,, be the minimal polynomial of «; over K of degree d;.
Consider a tower of fields

KCK(w) C--- CK(ag,...0;) C--- CK(ag, ..., ).

Then by Corollary 2 of Theorem 7.4 (Section 7.2) the number of monomorphisms j : K(a;) —
L which extends a monomorphism i : K — L defined as i(k) = k is equal to the number of
distinct roots of m,, in L which is at most [K(«1) : K]. Using similar argument it follows that
for each monomorphism j : K(a1) — L there are at most [K (a1, 2) : K(#1)] monomorphisms
from K(a1,a2) to L which extend j. Thus there are at most [K(a1,a2) : K] monomorphisms
from K(aq,a2) to L which fixes K. Continuing this we get that there are at most [L : K] auto-
morphisms of L which fixes K.

(7) Let L : K be algebraic. Suppose that a, B € L are separable over K. Prove that « + S and «p are
separable over K.
Solution: Let M := K(a, B). Since «, B are algebraic over K, M : K is a finite extension. As «, 8
are separable over K, by Corollary 2 of Theorem 10.3 (Section 10.2), M : K is separable. Since
x+ B, a.p € M, they are separable over K.

(8) Exercise 10.1 from the book.
Solution: Suppose that L : K is separable. Let j : K — L’ be a monomorphism defined as
j(k) = k for k € K. Since L : K is separable and j(m,) = m, splits in L’ (as L’ : K is normal), by
Theorem 10.3 there are exactly [L : K] monomorphisms from L to L.

Conversely, if L : K is not separable then there are fewer than [L : K] monomorphisms which
fix K by Theorem 10.3
Thus the result follows.

(9) Find the number of automorphisms of Q(+/2, w) which fixes Q where w is a cube root of unity.

Solution: Since Q(\Sﬁ, w) : Q is Galois, by Theorem 10.4 the number of automorphisms of

Q(+v/2,w) which fixes Q is [Q(v/2, w) : Q] = 6.
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(10) Consider an extension Z,(t!/7) : Z,(t) where p is a prime and t an indeterminate over Z,.
Prove that the number of automorphisms of Z, (t'/7) which fixes Z,(t) is less than p.
Solution: Notice that Z, (t1/7) : Z,(t) is not separable because the minimal polynomial of /7
over Z,(t) is XP —t = (X — t1/P)? which is not separable. Hence by Theorem 10.4 the number
of automorphisms of Z, (t!/7) which fixes Z, (t) is less than [Z,(t'/7) : Z,(t)] = p.



