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* Here the references referes to the Garling’s book on Galois theory.

(1) Exercise 9.2 from the book.
Solution: Let L : K be algebraic. Set

M := K(α ∈ L : the minimal polynomial of α over K splits in L).

We claim that M is the greatest intermediate field of L for which M : K is normal. Let α ∈ M
and m be the minimal polynomial of α over K. Let H be a splitting field of m and β ∈ H be
another root of m. As m splits in L, β ∈ L. Since the minimal polynomial of β is m itself and m
splits in L, β ∈ M. Thus M : K is normal.

Now suppose let M′ be an intermediate field such that M′ : K is normal. Then for any
α ∈ M′ the minimal polynomial of α over K splits in M′ and hence in L. Therefore α ∈ M.
Hence M is the greatest intermediate field of L for which M : K is normal.

(2) Exercise 9.3 from the book.
Solution: First we prove that K(M1, M2) : K is normal. By Theorem 9.1 M1 : K (resp. M2 : K) is
a splitting field extension for some S1 ⊆ K[X] (resp. S2 ⊆ K[X]). Define S := { f g : f ∈ S1, g ∈
S2} and let M ⊆ L be the splitting field extension of S over K. (Since for every f ∈ S1 (resp.
g ∈ S2), f splits in M1 (resp. M2), f g splits in L. Hence there exits a splitting field M ⊆ L of S).
We claim that M = K(M1, M2). Since for every f ∈ S1 the polynomial f splits in M, M1 ⊆ M.
Similarly, M2 ⊆ M. Hence K(M1, M2) ⊆ M. Moreover, if M′ ⊆ L is any other intermediate
field containing M1 and M2, then for every f ∈ S1, g ∈ S2, f g splits in M′. Hence M ⊆ M′.
Thus M is the smallest field containing M1 and M2 which implies that M = K(M1, M2).

Now we prove that M1 ∩ M2 : K is normal. Clearly, M1 ∩ M2 : K is algebraic. Let α ∈
M1 ∩ M2 and m be the minimal polynomial of α over K. As M1 : K and M2 : K are normal,
m splits over M1 and M2. Hence all the roots of m are in M1 ∩ M2 and thus M1 ∩ M2 : K is
normal.

(3) Prove Exercise 9.4 of the book in the case L : K is finite.
Solution: Let L : K be finite and N : L be a normal closure of L : K. First we prove that
N : K is finite. Let L = K(α1, . . . , αn) and mαi be the minimal polynomial of αi over K. Set
g = mα1 . . . mαn . Let M be the splitting field of g over K. Then M : K is a finite normal extension.
Consider a monomorphism i : L −→ N defined as i(l) = l for l ∈ L. Then i(g) = g. Since N : K
is normal, each mαi splits over N and so does g splits over N. Therefore by Theorem 7.5 i can
be extended to a monomorphism σ : M −→ N. As M : K is normal, σ(M) : K is a normal
extension. Since N : L is the normal closure of L : K, σ(M) = N and hence in particular, N : K
is a splitting field extension of σ(g) = g.

Now, let N′ be another normal closure of L : K. Consider a monomorphism i′ : L −→ N′
defined as i′(l) = l for l ∈ L. Then i′(g) = g. Since N′ : K is normal, each mαi splits over N′
and so does g splits over N′. Therefore i′ can be extended to a monomorphism j : N −→ N′.
Then j(N) : K is a normal extension. As N′ : L is a normal closure of L : K, j(N) = N′ and
hence j is an isomorphism onto N′.
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(4) Let K ⊆ M ⊆ L be an extension of fields such that M : K and L : M is normal. Is L : K normal
? If so, prove this or else give a counter-example.
Solution: No, L : K need not be normal. Let L = Q( 4

√
2), M = Q(

√
2) and K = Q. Then L : M

and M : K are quadratic extensions and hence are normal. But L : K is not normal because the
minimal polynomial of 4

√
2 over Q is X4 − 2 which doesn’t split in L.

(5) Find the normal closure for the following field extensions: (a) Q( p
√

2) : Q where p is a prime;
(b) Z3(α) : Z3 where α3 − α + 1 = 0
Solution: (a) Note that the minimal polynomial of α := p

√
2 over Q is Xp − 2. Let ω ∈ C be the

p-th root of unity. Then α, ωα, ω2α, . . . , ωp−1α are all the distinct roots of Xp− 2. Hence we need
to add ω in the normal closure of Q( p

√
2) : Q. We prove that in fact Q( p

√
2, ω) : Q( p

√
2) is the

normal closure of Q( p
√

2) : Q. Since Q( p
√

2, ω) : Q is the splitting field of Xp − 2, Q( p
√

2, ω) : Q

is a normal extension.
Now suppose Q( p

√
2) ⊆ M ⊆ Q( p

√
2, ω) is a tower and M : Q is normal. Then since Xp − 2

is irreducible over Q it splits over M and hence p
√

2, ω ∈ M. Thus M = Q( p
√

2, ω).
(b) We prove that Z3(α) : Z3 is normal and hence its normal closure is itself. Since X3−X +

1 has no roots over Z3, it is irreducible over Z3. Moreover, if α is a root of X3 − X + 1, then
α + 1 and α + 2 are also the roots of X3 − X + 1. Hence Z3(α) : Z3 is a splitting field extension
of X3 − X + 1 and thus Z3(α) : Z3 is normal.

(6) Let L : K be a finite normal extension. Prove that the number of automorphisms of L which
fixes K is at most [L : K].
Solution: Let L = K(α1, . . . , αn) and mαi be the minimal polynomial of αi over K of degree di.
Consider a tower of fields

K ⊆ K(α1) ⊆ · · · ⊆ K(α1, . . . αi) ⊆ · · · ⊆ K(α1, . . . , αn).

Then by Corollary 2 of Theorem 7.4 (Section 7.2) the number of monomorphisms j : K(α1) −→
L which extends a monomorphism i : K −→ L defined as i(k) = k is equal to the number of
distinct roots of mα1 in L which is at most [K(α1) : K]. Using similar argument it follows that
for each monomorphism j : K(α1) −→ L there are at most [K(α1, α2) : K(α1)] monomorphisms
from K(α1, α2) to L which extend j. Thus there are at most [K(α1, α2) : K] monomorphisms
from K(α1, α2) to L which fixes K. Continuing this we get that there are at most [L : K] auto-
morphisms of L which fixes K.

(7) Let L : K be algebraic. Suppose that α, β ∈ L are separable over K. Prove that α + β and αβ are
separable over K.
Solution: Let M := K(α, β). Since α, β are algebraic over K, M : K is a finite extension. As α, β
are separable over K, by Corollary 2 of Theorem 10.3 (Section 10.2), M : K is separable. Since
α + β, α.β ∈ M, they are separable over K.

(8) Exercise 10.1 from the book.
Solution: Suppose that L : K is separable. Let j : K −→ L′ be a monomorphism defined as
j(k) = k for k ∈ K. Since L : K is separable and j(mα) = mα splits in L′ (as L′ : K is normal), by
Theorem 10.3 there are exactly [L : K] monomorphisms from L to L′.

Conversely, if L : K is not separable then there are fewer than [L : K] monomorphisms which
fix K by Theorem 10.3

Thus the result follows.
(9) Find the number of automorphisms of Q( 3

√
2, ω) which fixes Q where ω is a cube root of unity.

Solution: Since Q( 3
√

2, ω) : Q is Galois, by Theorem 10.4 the number of automorphisms of
Q( 3
√

2, ω) which fixes Q is [Q( 3
√

2, ω) : Q] = 6.
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(10) Consider an extension Zp(t1/p) : Zp(t) where p is a prime and t an indeterminate over Zp.
Prove that the number of automorphisms of Zp(t1/p) which fixes Zp(t) is less than p.
Solution: Notice that Zp(t1/p) : Zp(t) is not separable because the minimal polynomial of t1/p

over Zp(t) is Xp− t = (X− t1/p)p which is not separable. Hence by Theorem 10.4 the number
of automorphisms of Zp(t1/p) which fixes Zp(t) is less than [Zp(t1/p) : Zp(t)] = p.


