NAP 2019, MODULE-III, SOLUTIONS OF EXERCISE SET 2

SHIV PRAKASH PATEL & SHREEDEVI MASUTI

* Here the references referes to the Garling's book on Galois theory.

(1) Exercise 9.2 from the book. **Solution:** Let *L* : *K* be algebraic. Set

 $M := K(\alpha \in L :$ the minimal polynomial of α over K splits in L).

We claim that *M* is the greatest intermediate field of *L* for which *M* : *K* is normal. Let $\alpha \in M$ and *m* be the minimal polynomial of α over *K*. Let *H* be a splitting field of *m* and $\beta \in H$ be another root of *m*. As *m* splits in *L*, $\beta \in L$. Since the minimal polynomial of β is *m* itself and *m* splits in *L*, $\beta \in M$. Thus *M* : *K* is normal.

Now suppose let M' be an intermediate field such that M' : K is normal. Then for any $\alpha \in M'$ the minimal polynomial of α over K splits in M' and hence in L. Therefore $\alpha \in M$. Hence M is the greatest intermediate field of L for which M : K is normal.

(2) Exercise 9.3 from the book.

Solution: First we prove that $K(M_1, M_2) : K$ is normal. By Theorem 9.1 $M_1 : K$ (resp. $M_2 : K$) is a splitting field extension for some $S_1 \subseteq K[X]$ (resp. $S_2 \subseteq K[X]$). Define $S := \{fg : f \in S_1, g \in S_2\}$ and let $M \subseteq L$ be the splitting field extension of S over K. (Since for every $f \in S_1$ (resp. $g \in S_2$), f splits in M_1 (resp. M_2), fg splits in L. Hence there exits a splitting field $M \subseteq L$ of S). We claim that $M = K(M_1, M_2)$. Since for every $f \in S_1$ the polynomial f splits in M, $M_1 \subseteq M$. Similarly, $M_2 \subseteq M$. Hence $K(M_1, M_2) \subseteq M$. Moreover, if $M' \subseteq L$ is any other intermediate field containing M_1 and M_2 , then for every $f \in S_1$, $g \in S_2$, fg splits in M'. Hence $M \subseteq M'$. Thus M is the smallest field containing M_1 and M_2 which implies that $M = K(M_1, M_2)$.

Now we prove that $M_1 \cap M_2$: *K* is normal. Clearly, $M_1 \cap M_2$: *K* is algebraic. Let $\alpha \in M_1 \cap M_2$ and *m* be the minimal polynomial of α over *K*. As M_1 : *K* and M_2 : *K* are normal, *m* splits over M_1 and M_2 . Hence all the roots of *m* are in $M_1 \cap M_2$ and thus $M_1 \cap M_2$: *K* is normal.

(3) Prove Exercise 9.4 of the book in the case *L* : *K* is finite.

Solution: Let L : K be finite and N : L be a normal closure of L : K. First we prove that N : K is finite. Let $L = K(\alpha_1, ..., \alpha_n)$ and m_{α_i} be the minimal polynomial of α_i over K. Set $g = m_{\alpha_1} ... m_{\alpha_n}$. Let M be the splitting field of g over K. Then M : K is a finite normal extension. Consider a monomorphism $i : L \longrightarrow N$ defined as i(l) = l for $l \in L$. Then i(g) = g. Since N : K is normal, each m_{α_i} splits over N and so does g splits over N. Therefore by Theorem 7.5 i can be extended to a monomorphism $\sigma : M \longrightarrow N$. As M : K is normal, $\sigma(M) : K$ is a normal extension. Since N : L is the normal closure of L : K, $\sigma(M) = N$ and hence in particular, N : K is a splitting field extension of $\sigma(g) = g$.

Now, let N' be another normal closure of L : K. Consider a monomorphism $i' : L \longrightarrow N'$ defined as i'(l) = l for $l \in L$. Then i'(g) = g. Since N' : K is normal, each m_{α_i} splits over N' and so does g splits over N'. Therefore i' can be extended to a monomorphism $j : N \longrightarrow N'$. Then j(N) : K is a normal extension. As N' : L is a normal closure of L : K, j(N) = N' and hence j is an isomorphism onto N'.

(4) Let $K \subseteq M \subseteq L$ be an extension of fields such that M : K and L : M is normal. Is L : K normal ? If so, prove this or else give a counter-example.

Solution: No, *L* : *K* need not be normal. Let $L = \mathbb{Q}(\sqrt[4]{2})$, $M = \mathbb{Q}(\sqrt{2})$ and $K = \mathbb{Q}$. Then *L* : *M* and *M* : *K* are quadratic extensions and hence are normal. But *L* : *K* is not normal because the minimal polynomial of $\sqrt[4]{2}$ over \mathbb{Q} is $X^4 - 2$ which doesn't split in *L*.

(5) Find the normal closure for the following field extensions: (a) Q(^p√2) : Q where *p* is a prime;
(b) Z₃(α) : Z₃ where α³ - α + 1 = 0
Solution: (a) Note that the minimal polynomial of α := ^p√2 over Q is X^p - 2. Let ω ∈ C be the *p*-th root of unity. Then α, ωα, ω²α, ..., ω^{p-1}α are all the distinct roots of X^p - 2. Hence we need to add ω in the normal closure of Q(^p√2) : Q. We prove that in fact Q(^p√2, ω) : Q(^p√2) is the normal closure of Q(^p√2) : Q. Since Q(^p√2, ω) : Q is the splitting field of X^p - 2, Q(^p√2, ω) : Q is a normal extension.

Now suppose $\mathbb{Q}(\sqrt[p]{2}) \subseteq M \subseteq \mathbb{Q}(\sqrt[p]{2}, \omega)$ is a tower and $M : \mathbb{Q}$ is normal. Then since $X^p - 2$ is irreducible over \mathbb{Q} it splits over M and hence $\sqrt[p]{2}$, $\omega \in M$. Thus $M = \mathbb{Q}(\sqrt[p]{2}, \omega)$.

(b) We prove that $\mathbb{Z}_3(\alpha) : \mathbb{Z}_3$ is normal and hence its normal closure is itself. Since $X^3 - X + 1$ has no roots over \mathbb{Z}_3 , it is irreducible over \mathbb{Z}_3 . Moreover, if α is a root of $X^3 - X + 1$, then $\alpha + 1$ and $\alpha + 2$ are also the roots of $X^3 - X + 1$. Hence $\mathbb{Z}_3(\alpha) : \mathbb{Z}_3$ is a splitting field extension of $X^3 - X + 1$ and thus $\mathbb{Z}_3(\alpha) : \mathbb{Z}_3$ is normal.

(6) Let *L* : *K* be a finite normal extension. Prove that the number of automorphisms of *L* which fixes *K* is at most [*L* : *K*].

Solution: Let $L = K(\alpha_1, ..., \alpha_n)$ and m_{α_i} be the minimal polynomial of α_i over K of degree d_i . Consider a tower of fields

$$K \subseteq K(\alpha_1) \subseteq \cdots \subseteq K(\alpha_1, \ldots, \alpha_i) \subseteq \cdots \subseteq K(\alpha_1, \ldots, \alpha_n).$$

Then by Corollary 2 of Theorem 7.4 (Section 7.2) the number of monomorphisms $j : K(\alpha_1) \longrightarrow L$ which extends a monomorphism $i : K \longrightarrow L$ defined as i(k) = k is equal to the number of distinct roots of m_{α_1} in L which is at most $[K(\alpha_1) : K]$. Using similar argument it follows that for each monomorphism $j : K(\alpha_1) \longrightarrow L$ there are at most $[K(\alpha_1, \alpha_2) : K(\alpha_1)]$ monomorphisms from $K(\alpha_1, \alpha_2)$ to L which extend j. Thus there are at most $[K(\alpha_1, \alpha_2) : K]$ monomorphisms from $K(\alpha_1, \alpha_2)$ to L which fixes K. Continuing this we get that there are at most [L : K] automorphisms of L which fixes K.

(7) Let *L* : *K* be algebraic. Suppose that $\alpha, \beta \in L$ are separable over *K*. Prove that $\alpha + \beta$ and $\alpha\beta$ are separable over *K*.

Solution: Let $M := K(\alpha, \beta)$. Since α, β are algebraic over K, M : K is a finite extension. As α, β are separable over K, by Corollary 2 of Theorem 10.3 (Section 10.2), M : K is separable. Since $\alpha + \beta$, $\alpha.\beta \in M$, they are separable over K.

(8) Exercise 10.1 from the book. **Solution:** Suppose that L : K is separable. Let $j : K \longrightarrow L'$ be a monomorphism defined as j(k) = k for $k \in K$. Since L : K is separable and $j(m_{\alpha}) = m_{\alpha}$ splits in L' (as L' : K is normal), by Theorem 10.3 there are exactly [L : K] monomorphisms from L to L'.

Conversely, if L : K is not separable then there are fewer than [L : K] monomorphisms which fix K by Theorem 10.3

Thus the result follows.

(9) Find the number of automorphisms of Q(³√2, ω) which fixes Q where ω is a cube root of unity. Solution: Since Q(³√2, ω) : Q is Galois, by Theorem 10.4 the number of automorphisms of Q(³√2, ω) which fixes Q is [Q(³√2, ω) : Q] = 6.

(10) Consider an extension $\mathbb{Z}_p(t^{1/p}) : \mathbb{Z}_p(t)$ where p is a prime and t an indeterminate over \mathbb{Z}_p . Prove that the number of automorphisms of $\mathbb{Z}_p(t^{1/p})$ which fixes $\mathbb{Z}_p(t)$ is less than p. **Solution:** Notice that $\mathbb{Z}_p(t^{1/p}) : \mathbb{Z}_p(t)$ is not separable because the minimal polynomial of $t^{1/p}$ over $\mathbb{Z}_p(t)$ is $X^p - t = (X - t^{1/p})^p$ which is not separable. Hence by Theorem 10.4 the number of automorphisms of $\mathbb{Z}_p(t^{1/p})$ which fixes $\mathbb{Z}_p(t)$ is less than $[\mathbb{Z}_p(t^{1/p}) : \mathbb{Z}_p(t)] = p$.