NAP 2019, MODULE-III, SOLUTIONS OF HOMEWORK ASSIGNMENT # 1

SHREEDEVI MASUTI & SHIV PRAKASH PATEL

Comment: In case, you notice some typo or inaccuracy please let us know. **Problem 7.1 on page 59:**

Let $f(X) \in \mathbb{R}[X]$ be a non-constant irreducible polynomial. By Fundamental theorem of algebra f(X) has all its roots in \mathbb{C} .

Case 1: One of the roots of f(X) is in \mathbb{R} , say α . Then $X - \alpha \in \mathbb{R}[X]$ is a factor of f(X). But, f(X) is irreducible and therefore $f(X) = \lambda(X - \alpha)$ which is of degree 1.

Case 2: None of the roots of f(X) are in \mathbb{R} . Let $a + ib \in \mathbb{C}$ be a root of f(X) where $a, b \in \mathbb{R}$ and $b \neq 0$ (as usual $i = \sqrt{-1}$). Then (a hint was given in the class) that $a - ib \in \mathbb{C}$ is also a root of f(X) [some details are needed here]. Since $b \neq 0$, $a + ib \neq a - ib$ therefore (X - (a + ib))(X - (a - ib)) is a factor of f(X). Therefore $X^2 - 2aX + a^2 + b^2 \in \mathbb{R}[X]$ is a factor of f(X). But, f(X) is irreducible in $\mathbb{R}[X]$ therefore $f(X) = \lambda(X^2 - 2aX + a^2 + b^2)$ for some $\lambda \in \mathbb{R}$ which is of degree 2.

Problem 7.2 on page 62:

Want to show that $f(X) = X^3 - X + 1 \in \mathbb{Z}_3[X]$ is irreducible. Note that if f(X) is reducible then at least one of the factors will be of degree one, that is, f(X) will have a root in \mathbb{Z}_3 . Since \mathbb{Z}_3 has only 3 elements we check that $f(0) = 1 \neq 0$, $f(1) = 1 \neq 0$, $f(2) = 1 \neq 0$. We find that f(X) has no root in \mathbb{Z}_3 and therefore it is irreducible.

By Theorem 7.2 there is a simple extension $\mathbb{Z}_3(\zeta)$: \mathbb{Z}_3 of degree 3 such that $f(\zeta) = 0$. Then, of course, $\zeta + 1, \zeta - 1 \in \mathbb{Z}_3(\zeta)$. We find that

$$\begin{aligned} f(\zeta+1) &= (\zeta+1)^3 - (\zeta+1) + 1 = \zeta^3 + 3\zeta(\zeta+1) + 1 - \zeta - 1 + 1 = \zeta^3 - \zeta + 1 = 0, \\ f(\zeta-1) &= (\zeta-1)^3 - (\zeta-1) + 1 = \zeta^3 - 3\zeta(\zeta-1) - 1 - \zeta + 1 + 1 = \zeta^3 - \zeta + 1 = 0 \end{aligned}$$

(since 3 = 0 in \mathbb{Z}_3 and $f(\zeta) = 0$). Note that all three elements $\zeta, \zeta + 1, \zeta - 1$ are distinct. Therefore $f(X) = X^3 - X + 1 = (X - \zeta)(X - \zeta - 1)(X - \zeta + 1) \in \mathbb{Z}_3(\zeta)[X]$, that is f(X) splits over $\mathbb{Z}_3(\zeta)$.

Note that for any field *K* if $\mathbb{Z}_3 \subset K \subset \mathbb{Z}_3(\zeta)$ then either $K = \mathbb{Z}_3$ or $K = \mathbb{Z}_3(\zeta)$. But f(X) has no root in \mathbb{Z}_3 , thus there is no proper subfield *K* of $\mathbb{Z}_3(\zeta)$ such that f(X) splits over *K*. Therefore $\mathbb{Z}_3(\zeta)$ is a splitting field for f(X).

Since $[\mathbb{Z}_3(\zeta) : \mathbb{Z}_3] = 3$, $\mathbb{Z}_3(\zeta) = 3^3 = 27$. We skip writing the multiplication table.

Problem 7.3 on page 62:

Note that the simple transcendental extension K(t) of K is the quotient field of the the polynomial ring K[t] which is a unique factorization domain (UFD). Note that $X^n - t \in K[t][X]$ as well as in K(t)[X]. By Gauss lemma,

 $X^n - t$ is irreducible over F[t] if and only if it is irreducible over F(t).

As an application to the Exercise 5.4, one can prove that $X^n - t$ is irreducible in K[t][X] = K[X, t]. We prove this below.

Method 1 for irreducibility: Let $X^n - t = F(X, t)G(X, t)$ where $F(X, t), G(X, t) \in K[X, t]$. Since *t*-degree of the polynomial $X^n - t$ is 1 exactly one of the polynomial F(X, t), G(X, t) has *t*-degree

1 and the other has *t*-degree 0. Say F(X, t) = f(x) and G(X, t) = g(X)t + h(X). Then we have

$$X^{n} - t = f(X)(g(X)t + h(X)) = f(X)g(X)t + f(X)h(X).$$

Thus we get f(X)g(X) = -1, i.e. f(X) is invertible in K[X], i.e. $f(X) \in K^*$. Thus F(X) = f(X) is a unit. This prove that $X^n - t$ is irreducible in K[X, t].

Method 2 for irreducibility: Since *t* is prime (or irreducible) in K[t] we use Eisenstein criterion to conclude that $X^n - t$ is irreducible. Note that *t* divides all the coefficients of $X^n - t$ except the leading coefficient but t^2 does not divide the constant term -t.

Since $f(X) = X^n - t \in K(t)[X]$ is irreducible. Let *s* be a root of f(X) is an extension K(t)(s) : K(t) which is of degree *n* (by Theorem 7.2). First observation is that $s^n = t$ therefore K(t)(s) = K(s). If *s'* is another root of f(X) then $(s'/s)^n = t/t = 1$, that is s'/s is a root of $X^n - 1$ which has all its roots in *K*. Then $s' = \omega s$ where $\omega \in K$ is a root of $X^n - 1$. Thus the set of all the roots of $X^n - t$ is $S = \{s\omega : \omega \text{ is a root of } X^n - 1\}$. Since roots of $X^n - 1$ are in *K*, as splitting field of f(X) is

$$K(t)(S) = K(t)(s) = K(s).$$

The extension K(s) : K(t) has $s^n = t$ and $K(t) \to K(s)$ is given by fixing K and $t \mapsto s^n$.

Problem 7.4 on page 67: Given that $f(X) = X^4 - 2X^3 + 7X^2 - 6X + 12 \in \mathbb{Q}[X]$ and $i\sqrt{3}, 1 + i\sqrt{3}$ are roots of f(X). Let $L : \mathbb{Q}$ be a splitting field extension for f(X). Assume that $\sigma : L \to L$ is an automorphism such that $\sigma(i\sqrt{3}) = 1 + i\sqrt{3}$. Then

$$\sigma(-3) = \sigma(i\sqrt{3} \cdot i\sqrt{3}) = \sigma(i\sqrt{3})\sigma(i\sqrt{3}) = (1 + i\sqrt{3})(1 + i\sqrt{3}) = -2 + 2i\sqrt{3}.$$

But σ is a field automorphism $\sigma(1) = 1 \Rightarrow \sigma(-3) = -3 \neq -2 + 2i\sqrt{3}$, a contradiction. Thus no σ is possible with desired property.

Problem 7.5 on page 70:

Suppose that M : L and L : K are extensions, and that $\alpha \in M$ is algebraic over K. It is NOT always the case that $[L(\alpha) : L]$ divides $K(\alpha) : K$].

[Heuristic idea: Let $m_K(X) \in K[X]$ and $m_L(X) \in L[X]$ be the minimal polynomial of α over K and L respectively. Then there is a $g(X) \in L[X]$ such that $m_K(X) = m_L(X) \cdot g(X)$. Note that

$$[K(\alpha):K] = \text{degree}(m_K(X)) \text{ and } [L(\alpha):L] = \text{degree}(m_L(X)).$$

Moreover, degree $(m_K(X))$ = degree $(m_L(X))$ + degree(g(X)). *There is no reason why* degree $(m_L(X))$ *should divide* degree $(m_K(X))$. Here is an example.]

Consider $f(X) = X^5 - 20X + 2 \in \mathbb{Q}[X]$. By Eisenstein criterion f(X) is irreducible. Use real analysis (maxima, minima principle etc.) to say that f(X) has exactly 3 roots in \mathbb{R} and 2 roots in \mathbb{C} which are not in \mathbb{R} . Write $\alpha_1, \alpha_2, \alpha_3$ be roots in \mathbb{R} and $\alpha, \overline{\alpha}$ the roots in \mathbb{C} which are not in \mathbb{R} . Here $\overline{\alpha}$ is the complex conjugate of α and we have seen in Exercise 7.1 that if α is a root of a polynomial over real numbers then $\overline{\alpha}$ is also a root. Then

$$f(X) = (X - \alpha_1)(X - \alpha_2)(X - \alpha_3)(X - \alpha)(X - \bar{\alpha}).$$

Note that f(X) is a minimal polynomial for all the elements $\alpha_1, \alpha_2, \alpha_3, \alpha, \bar{\alpha}$ over Q.

Now take $K = \mathbb{Q}$, $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ and $M = \mathbb{C}$. Take $\alpha \in \mathbb{C}$.

Then $m_K(X) = m_Q(X) = f(X)$ therefore $[K(\alpha) : K] = \text{degree}(f(X)) = 5$.

Note that f(X) has a root in L, it is not irreducible over L. Then f(X) is not the minimal polynomial for α over *L*. Note that $g(X) = (X - \alpha)(X - \bar{\alpha}) = \frac{J(\Delta)}{(X - \alpha_1)(X - \alpha_2)(X - \alpha_3)}$ $\in L[X]$ is irreducible because it has no roots in *L* (since $L \subset \mathbb{R}$ but $\alpha, \overline{\alpha} \notin \mathbb{R}$). Therefore the minimal polynomial of α over L is $m_L(X) = g(X)$ which is of degree 2. Therefore $[L(\alpha) : L] = \text{degree}(g(X)) = 2$. But 2 does not divide 5.

Problem 7.6 on page 70:

For a 3 degree polynomial over $\mathbb{Z}_2 = \{0, 1\}$, it is reducible if and only if it has a root in \mathbb{Z}_2 . Here is the list of all monic cubic polynomials in $\mathbb{Z}_2[X]$ and their factorization.

- (a) $X^3 = X \cdot X \cdot X$.
- (b) $X^3 + 1 = (X + 1)(X^2 + X + 1).$
- (c) $X^3 + X = X(X^2 + 1) = X(X + 1)(X + 1).$
- (d) $f(X) := X^3 + X + 1$ is irreducible (since no roots in \mathbb{Z}_2).
- (e) $X^3 + X^2 = X^2(X+1)$.
- (f) $g(X) := X^3 + X^2 + 1$ is irreducible (since no roots in \mathbb{Z}_2)
- (g) $X^3 + X^2 + X = X(X^2 + X + 1).$ (h) $X^3 + X^2 + X + 1 = (X^2 + 1)(X + 1) = (X + 1)^3.$

For the polynomials in (*a*), (*c*), (*e*) and (*h*) the field \mathbb{Z}_2 is a splitting field since all the roots of these polynomials are in \mathbb{Z}_2 .

For the polynomials in (*b*) and (*g*) one root is there in \mathbb{Z}_2 but the roots of $X^2 + X + 1$ are not in \mathbb{Z}_2 . By Example 4 discussed in the book, its splitting field is a two degree extension which we can write as $\mathbb{Z}_2(\alpha) = \{0, 1, \alpha, 1 + \alpha\}$. Thus the splitting fields for $X^3 + 1$ and $X^3 + X^2 + X$ are isomorphic.

Using Theorem 7.2, for the polynomial $f(X) = X^3 + X + 1 \in \mathbb{Z}_2[X]$ which is irreducible, let α be a root in an extension $\mathbb{Z}_2(\alpha)$: \mathbb{Z}_2 which is of degree 3. Then

$$\mathbb{Z}_2(\alpha) = \{0, 1, \alpha, 1 + \alpha, \alpha^2, 1 + \alpha^2, \alpha + \alpha^2, 1 + \alpha + \alpha^2\}.$$

Then we find that $f(X) = X^3 + X + 1 = (X - \alpha)(X - \alpha^2)(X - \alpha - \alpha^2)$, i.e. all the roots of f(X)are in $\mathbb{Z}_2(\alpha)$ and there is no proper subfield where f(X) splits into linear polynomials. Thus $\mathbb{Z}_2(\alpha)$: \mathbb{Z}_2 is a splitting field extension for f(X).

Now consider $g(X) = X^3 + X^2 + 1 \in \mathbb{Z}_2[X]$ which is irreducible. Let α be a root of f(X)considered above. Then verify that

$$g(1 + \alpha) = (1 + \alpha)^3 + (1 + \alpha)^2 + 1 = 0.$$

Since α , α^2 , $\alpha + \alpha^2$ are roots of f(X), the roots of g(X) are $1 + \alpha$, $1 + \alpha^2$, $1 + \alpha + \alpha^2$ in $\mathbb{Z}_2(\alpha)$. Therefore

$$g(X) = X^3 + X^2 + 1 = (X - 1 - \alpha)(X - 1 - \alpha^2)(X - 1 - \alpha - \alpha^2).$$

Thus $\mathbb{Z}_2(\alpha) : \mathbb{Z}_2$ is also a splitting field extension for g(X). Therefore splitting fields for f(X) and g(X) are isomorphic.

Problem 7.7 on page 70:

Let $f(X) = X^4 - 5X^2 + 6$, $g(X) = X^4 + 5X^2 + 6$ and $h(X) = X^4 - 5$ in Q[X]. We will find a splitting filed extension for all these polynomials. By fundamental theorem of algebra, these polynomials split over C. The linear factors over C are as follows:

(a) $f(X) = (X^2 - 2)(X^2 - 3) = (X + \sqrt{2})(X - \sqrt{2})(X + \sqrt{3})(X - \sqrt{3}),$ (b) $g(X) = (X^2 + 2)(X^2 + 3) = (X + i\sqrt{2})(X - i\sqrt{2})(X + i\sqrt{3})(X - i\sqrt{3}),$

(c) $h(X) = (X^2 - \sqrt{5})(X^2 + \sqrt{5}) = (X - 5^{\frac{1}{4}})(X + 5^{\frac{1}{4}})(X - i5^{\frac{1}{4}})(X + i5^{\frac{1}{4}}).$

By Theorem 7.1, a splitting field for these polynomials f(X), g(X) and h(X) is given by

(a) $\mathbb{Q}(\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}),$

(b)
$$\mathbb{Q}(i\sqrt{2}, -i\sqrt{2}, i\sqrt{3}, -i\sqrt{3}) = \mathbb{Q}(i\sqrt{2}, i\sqrt{3})$$
 and

(c) $\mathbb{Q}(5^{\frac{1}{4}}, -5^{\frac{1}{4}}, i 5^{\frac{1}{4}}, -i 5^{\frac{1}{4}}) = \mathbb{Q}(i, 5^{\frac{1}{4}})$

respectively.

The degrees are as follows (justify each equality below):

- (a) $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4,$
- (b) $[\mathbb{Q}(i\sqrt{2}, i\sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(i\sqrt{2}, i\sqrt{3}) : \mathbb{Q}(i\sqrt{2})] \cdot [\mathbb{Q}(i\sqrt{2}) : \mathbb{Q}] = 2 \cdot 2 = 4$ and
- (c) $[\mathbb{Q}(i, 5^{\frac{1}{4}}) : \mathbb{Q}] = [\mathbb{Q}(i, 5^{\frac{1}{4}}) : \mathbb{Q}(5^{\frac{1}{4}})] \cdot [\mathbb{Q}(5^{\frac{1}{4}}) : \mathbb{Q}] = 2 \cdot 4 = 8.$

Moreover, we have the following (justify each of these):

- (a) $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3}),$
- (b) $Q(i\sqrt{2}, i\sqrt{3}) = Q(i\sqrt{2} + i\sqrt{3})$ and
- (c) $\mathbb{Q}(i, 5^{\frac{1}{4}}) = \mathbb{Q}(i + 5^{\frac{1}{4}}).$

Problem 7.8 on page 70:

Write $f_1(X) = X^4 + 1$, $f_2(X) = X^4 + 4$, $f_3(X) = (X^4 + 1)(X^4 + 4)$ and $f_4(X) = (X^4 - 1)(X^4 + 4)$ in Q[X]. As in Exercise 7.7, using Fundamental theorem of algebra. We first factor them over \mathbb{C} and using Theorem 7.1 we find splitting fields. We find that

(a) $f_1(X) = X^4 + 1 = (X^2 + i)(X^2 - i) = (X - \frac{1+i}{2})(X - \frac{1-i}{2})(X - \frac{-1+i}{2})(X - \frac{-1-i}{2}),$

(b)
$$f_2(X) = X^4 + 4 = (X^2 + 2i)(X^2 - 2i) = (X - 1 - i)(X - 1 + i)(X + 1 + i)(X + 1 - i),$$

- (c) $f_3(X) = f_1(X)f_2(X)$ which is product of linear factors in $f_1(X)$ and $f_2(X)$,
- (d) $f_4(X) = (X^4 1)f_2(X) = (X 1)(X + 1)(X i)(X + i)f_2(X)$ and we already have linear factors of $f_2(X)$.

We write L_1 , L_2 , L_3 and L_4 a splitting field for $f_1(X)$, $f_2(X)$, $f_3(X)$ and $f_4(X)$ respectively. We have

(a) $L_1 = \mathbb{Q}(\frac{1+i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}, \frac{-1+i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}) = \mathbb{Q}(\frac{1}{\sqrt{2}}, i) = \mathbb{Q}(\sqrt{2}, i)$ (b) $L_2 = \mathbb{Q}(1+i, 1-i, -1+i, -1-i) = \mathbb{Q}(i)$ (c) $L_3 = \mathbb{Q}(\frac{1+i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}, 1+i, 1-i, -1+i, -1-i) = \mathbb{Q}(\sqrt{2}, i)$ and (d) $L_4 = \mathbb{Q}(1, -1, i, -i, 1+i, 1-i, -1+i, -1-i) = \mathbb{Q}(i).$

There degrees are as follows:

- (a) $[L_1:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(i)] \cdot [\mathbb{Q}(i):\mathbb{Q}] = 2 \cdot 2 = 4,$
- (b) $[L_2:\mathbb{Q}] = [\mathbb{Q}(i):\mathbb{Q}] = 2$,
- (c) $[L_3: \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, i): \mathbb{Q}] = 4$ and
- (d) $[L_4:\mathbb{Q}] = [\mathbb{Q}(i):\mathbb{Q}] = 2.$

Verify the following: $\mathbb{Q}(\sqrt{2}, i) = \mathbb{Q}(\sqrt{2} + i)$.

Problem 7.9 on page 70:

Let *K* be a field and let $f(X) \in K[X]$ be a monic polynomial of degree n > 0. Let L : K be a splitting field extension for f(X). We want to prove that [L : K] divides n!. We prove this by induction on the degree(f(X)) = n.

If n = 1, f(X) splits in K then L = K and there is nothing to prove.

Assume the theorem true for all n' > 0 and n' < n.

Case 1: f(X) is irreducible. By Theorem 7.2, $K(\alpha) \simeq K[X]/(f)$ is a field in which f(X) has a root, and $[K(\alpha) : K] = n$. So $f(X) = (X - \alpha)g(X) \in K(\alpha)[X]$ for some $g(X) \in K(\alpha)[X]$ and degree(g(X)) = n - 1. By induction hypothesis, if $L : K(\alpha)$ is a splitting field for g(X)then $[L : K(\alpha)]$ divides (n - 1)!. Then $[L : K] = [L : K(\alpha)] \cdot [K(\alpha) : K] = [L : K(\alpha)]n$ which divides n!. **Case 2:** f(X) is reducible.

Say that f(X) = g(X)h(X), where degree(g(X)) = r and degree(h(X)) = s, with 0 < r, s < n and r + s = n. By induction hypothesis, if $L_1 : K$ is a splitting field extension for g(X) then $[L_1 : K]$ divides r!. Consider $h(X) \in L_1[X]$. If $L : L_1$ is a splitting field extension for h(X) then $[L : L_1]$ divides s! (by the induction hypothesis). Note that f(X) splits in L. In fact, it is clear that L : K is a splitting field extension for f(X) which are precisely the roots of h(X) and g(X). Now the degree $[L : K] = [L : L_1] \cdot [L_1 : K]$, which divides r!s!. Since n = r + s, we know that r!s! divides n!, so [L : K] divides n!.

Problem 7.10 on page 70: Let $f(X) = X^3 - 5 \in K[X]$ where $K = \mathbb{Z}_7$, \mathbb{Z}_{11} or \mathbb{Z}_{13} . Note that f(X) is irreducible over K if and only if f(X) has a root in K.

Case 1: $K = \mathbb{Z}_7$

We see that $f(0) = -5 \neq 0$, $f(1) = -4 \neq 0$, $f(2) = 3 \neq 0$, $f(3) = 1 \neq 0$, $f(4) = -32 = 3 \neq 0$, $f(5) = -13 = 1 \neq 0$, $f(6) = -6 = 1 \neq 0$ therefore f(X) is irreducible over \mathbb{Z}_7 . Let α be a root of f(X) in an extension $\mathbb{Z}_7(\alpha) : \mathbb{Z}_7$ which has degree 3. Then we get that

$$f(X) = X^{3} - 5 = (X - \alpha)(X - 2\alpha)(X - 4\alpha)$$

that is f(X) splits over $\mathbb{Z}_7(\alpha)$. Therefore $\mathbb{Z}_7(\alpha) : \mathbb{Z}_7$ is a splitting field extension for f(X).

Case 2: $K = \mathbb{Z}_{11}$

Note that f(5) = 22 = 0 in \mathbb{Z}_{11} , therefore f(X) is reducible whose one factor is X - 3. We get $f(X) = (X - 3)(X^2 + 3X - 2)$. We check that $g(X) := X^2 + 3X - 2$ is irreducible since it does not have a root in \mathbb{Z}_{11} . Checking: $g(0) = -2 \neq 0$, $g(1) = 2 \neq 0$, $f(2) = 8 \neq 0$, $f(3) = 5 \neq 0$, $f(4) = 4 \neq 0$, $f(5) = 5 \neq 0$, $f(6) = 8 \neq 0$, $f(7) = 2 \neq 0$, $f(8) = -2 \neq 0$, $f(9) = -4 \neq 0$, $f(10) = -4 \neq 0$. Note that a splitting field for g(X) is also a splitting field for f(X). Let β be a root of g(X) in an extension $\mathbb{Z}_{11}(\beta) : \mathbb{Z}_{11}$ then $\mathbb{Z}_{11}(\beta)$ is a splitting field for g(X). By Example 4 in the book $\mathbb{Z}_{11}(\beta)$ is isomorphic to $\mathbb{Z}_{11}(\sqrt{6})$ since 6 is the discriminant of g(X).

Case 3: $K = \mathbb{Z}_{13}$ Check that 7, 8, 11 $\in \mathbb{Z}_{13}$ are roots of $f(X) = X^3 - 5 \in \mathbb{Z}_{13}[X]$. Then f(X) = (X - 7)(X - 8)(X - 11).

That is f(X) splits over \mathbb{Z}_{13} itself. Therefore \mathbb{Z}_{13} itself is a splitting field for f(X).