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Comment: In case, you notice some typo or inaccuracy please let us know. Problem 7.1 on page
59:
Let f (X) ∈ R[X] be a non-constant irreducible polynomial. By Fundamental theorem of algebra
f (X) has all its roots in C.

Case 1: One of the roots of f (X) is in R, say α. Then X− α ∈ R[X] is a factor of f (X). But, f (X)
is irreducible and therefore f (X) = λ(X− α) which is of degree 1.

Case 2: None of the roots of f (X) are in R. Let a + ib ∈ C be a root of f (X) where a, b ∈ R and
b 6= 0 (as usual i =

√
−1). Then (a hint was given in the class) that a− ib ∈ C is also a root of f (X)

[some details are needed here]. Since b 6= 0, a+ ib 6= a− ib therefore (X− (a+ ib))(X− (a− ib)) is
a factor of f (X). Therefore X2 − 2aX + a2 + b2 ∈ R[X] is a factor of f (X). But, f (X) is irreducible
in R[X] therefore f (X) = λ(X2 − 2aX + a2 + b2) for some λ ∈ R which is of degree 2.

Problem 7.2 on page 62:
Want to show that f (X) = X3 − X + 1 ∈ Z3[X] is irreducible. Note that if f (X) is reducible then
at least one of the factors will be of degree one, that is, f (X) will have a root in Z3. Since Z3 has
only 3 elements we check that f (0) = 1 6= 0, f (1) = 1 6= 0, f (2) = 1 6= 0. We find that f (X) has
no root in Z3 and therefore it is irreducible.

By Theorem 7.2 there is a simple extension Z3(ζ) : Z3 of degree 3 such that f (ζ) = 0. Then, of
course, ζ + 1, ζ − 1 ∈ Z3(ζ). We find that

f (ζ + 1) = (ζ + 1)3 − (ζ + 1) + 1 = ζ3 + 3ζ(ζ + 1) + 1− ζ − 1 + 1 = ζ3 − ζ + 1 = 0,
f (ζ − 1) = (ζ − 1)3 − (ζ − 1) + 1 = ζ3 − 3ζ(ζ − 1)− 1− ζ + 1 + 1 = ζ3 − ζ + 1 = 0

(since 3 = 0 in Z3 and f (ζ) = 0). Note that all three elements ζ, ζ + 1, ζ − 1 are distinct. Therefore
f (X) = X3 − X + 1 = (X− ζ)(X− ζ − 1)(X− ζ + 1) ∈ Z3(ζ)[X], that is f (X) splits over Z3(ζ).

Note that for any field K if Z3 ⊂ K ⊂ Z3(ζ) then either K = Z3 or K = Z3(ζ). But f (X) has
no root in Z3, thus there is no proper subfield K of Z3(ζ) such that f (X) splits over K. Therefore
Z3(ζ) is a splitting field for f (X).

Since [Z3(ζ) : Z3] = 3, Z3(ζ) = 33 = 27. We skip writing the multiplication table.

Problem 7.3 on page 62:
Note that the simple transcendental extension K(t) of K is the quotient field of the the polynomial
ring K[t] which is a unique factorization domain (UFD). Note that Xn − t ∈ K[t][X] as well as in
K(t)[X]. By Gauss lemma,

Xn − t is irreducible over F[t] if and only if it is irreducible over F(t).

As an application to the Exercise 5.4, one can prove that Xn − t is irreducible in K[t][X] = K[X, t].
We prove this below.

Method 1 for irreducibility: Let Xn − t = F(X, t)G(X, t) where F(X, t), G(X, t) ∈ K[X, t]. Since
t-degree of the polynomial Xn − t is 1 exactly one of the polynomial F(X, t), G(X, t) has t-degree
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1 and the other has t-degree 0. Say F(X, t) = f (x) and G(X, t) = g(X)t + h(X). Then we have

Xn − t = f (X)(g(X)t + h(X)) = f (X)g(X)t + f (X)h(X).

Thus we get f (X)g(X) = −1, i.e. f (X) is invertible in K[X], i.e. f (X) ∈ K∗. Thus F(X) = f (X) is
a unit. This prove that Xn − t is irreducible in K[X, t].

Method 2 for irreducibility: Since t is prime (or irreducible) in K[t] we use Eisenstein criterion
to conclude that Xn − t is irreducible. Note that t divides all the coefficients of Xn − t except the
leading coefficient but t2 does not divide the constant term −t.

Since f (X) = Xn − t ∈ K(t)[X] is irreducible. Let s be a root of f (X) is an extension K(t)(s) :
K(t) which is of degree n (by Theorem 7.2). First observation is that sn = t therefore K(t)(s) =
K(s). If s′ is another root of f (X) then (s′/s)n = t/t = 1, that is s′/s is a root of Xn − 1 which has
all its roots in K. Then s′ = ωs where ω ∈ K is a root of Xn − 1. Thus the set of all the roots of
Xn − t is S = {sω : ω is a root of Xn − 1}. Since roots of Xn − 1 are in K, as splitting field of f (X)
is

K(t)(S) = K(t)(s) = K(s).
The extension K(s) : K(t) has sn = t and K(t)→ K(s) is given by fixing K and t 7→ sn.

Problem 7.4 on page 67: Given that f (X) = X4 − 2X3 + 7X2 − 6X + 12 ∈ Q[X] and i
√

3, 1 + i
√

3
are roots of f (X). Let L : Q be a splitting field extension for f (X). Assume that σ : L → L is an
automorphism such that σ(i

√
3) = 1 + i

√
3. Then

σ(−3) = σ(i
√

3 · i
√

3) = σ(i
√

3)σ(i
√

3) = (1 + i
√

3)(1 + i
√

3) = −2 + 2i
√

3.

But σ is a field automorphism σ(1) = 1⇒ σ(−3) = −3 6= −2 + 2i
√

3, a contradiction. Thus no σ
is possible with desired property.

Problem 7.5 on page 70:
Suppose that M : L and L : K are extensions, and that α ∈ M is algebraic over K. It is NOT

always the case that [L(α) : L] divides K(α) : K].
[Heuristic idea: Let mK(X) ∈ K[X] and mL(X) ∈ L[X] be the minimal polynomial of α over K and L

respectively. Then there is a g(X) ∈ L[X] such that mK(X) = mL(X) · g(X). Note that

[K(α) : K] = degree(mK(X)) and [L(α) : L] = degree(mL(X)).

Moreover, degree(mK(X)) = degree(mL(X))+degree(g(X)). There is no reason why degree(mL(X))
should divide degree(mK(X)). Here is an example.]

Consider f (X) = X5 − 20X + 2 ∈ Q[X]. By Eisenstein criterion f (X) is irreducible. Use real
analysis (maxima, minima principle etc.) to say that f (X) has exactly 3 roots in R and 2 roots in C

which are not in R. Write α1, α2, α3 be roots in R and α, ᾱ the roots in C which are not in R. Here
ᾱ is the complex conjugate of α and we have seen in Exercise 7.1 that if α is a root of a polynomial
over real numbers then ᾱ is also a root. Then

f (X) = (X− α1)(X− α2)(X− α3)(X− α)(X− ᾱ).

Note that f (X) is a minimal polynomial for all the elements α1, α2, α3, α, ᾱ over Q.

Now take K = Q, L = Q(α1, α2, α3) and M = C. Take α ∈ C.

Then mK(X) = mQ(X) = f (X) therefore [K(α) : K] = degree( f (X)) = 5.
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Note that f (X) has a root in L, it is not irreducible over L. Then f (X) is not the minimal poly-

nomial for α over L. Note that g(X) = (X − α)(X − ᾱ) =
f (X)

(X− α1)(X− α2)(X− α3)
∈ L[X] is

irreducible because it has no roots in L (since L ⊂ R but α, ᾱ /∈ R). Therefore the minimal polyno-
mial of α over L is mL(X) = g(X) which is of degree 2. Therefore [L(α) : L] = degree(g(X)) = 2.
But 2 does not divide 5.

Problem 7.6 on page 70:
For a 3 degree polynomial over Z2 = {0, 1}, it is reducible if and only if it has a root in Z2. Here

is the list of all monic cubic polynomials in Z2[X] and their factorization.

(a) X3 = X · X · X.
(b) X3 + 1 = (X + 1)(X2 + X + 1).
(c) X3 + X = X(X2 + 1) = X(X + 1)(X + 1).
(d) f (X) := X3 + X + 1 is irreducible (since no roots in Z2).
(e) X3 + X2 = X2(X + 1).
(f) g(X) := X3 + X2 + 1 is irreducible (since no roots in Z2)
(g) X3 + X2 + X = X(X2 + X + 1).
(h) X3 + X2 + X + 1 = (X2 + 1)(X + 1) = (X + 1)3.

For the polynomials in (a), (c), (e) and (h) the field Z2 is a splitting field since all the roots of these
polynomials are in Z2.

For the polynomials in (b) and (g) one root is there in Z2 but the roots of X2 + X + 1 are not
in Z2. By Example 4 discussed in the book, its splitting field is a two degree extension which we
can write as Z2(α) = {0, 1, α, 1 + α}. Thus the splitting fields for X3 + 1 and X3 + X2 + X are
isomorphic.

Using Theorem 7.2, for the polynomial f (X) = X3 + X + 1 ∈ Z2[X] which is irreducible, let α
be a root in an extension Z2(α) : Z2 which is of degree 3. Then

Z2(α) = {0, 1, α, 1 + α, α2, 1 + α2, α + α2, 1 + α + α2}.

Then we find that f (X) = X3 + X + 1 = (X − α)(X − α2)(X − α− α2), i.e. all the roots of f (X)
are in Z2(α) and there is no proper subfield where f (X) splits into linear polynomials. Thus
Z2(α) : Z2 is a splitting field extension for f (X).

Now consider g(X) = X3 + X2 + 1 ∈ Z2[X] which is irreducible. Let α be a root of f (X)
considered above. Then verify that

g(1 + α) = (1 + α)3 + (1 + α)2 + 1 = 0.

Since α, α2, α+ α2 are roots of f (X), the roots of g(X) are 1+ α, 1+ α2, 1+ α+ α2 in Z2(α). Therefore

g(X) = X3 + X2 + 1 = (X− 1− α)(X− 1− α2)(X− 1− α− α2).

Thus Z2(α) : Z2 is also a splitting field extension for g(X). Therefore splitting fields for f (X) and
g(X) are isomorphic.

Problem 7.7 on page 70:
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Let f (X) = X4 − 5X2 + 6, g(X) = X4 + 5X2 + 6 and h(X) = X4 − 5 in Q[X]. We will find
a splitting filed extension for all these polynomials. By fundamental theorem of algebra, these
polynomials split over C. The linear factors over C are as follows:

(a) f (X) = (X2 − 2)(X2 − 3) = (X +
√

2)(X−
√

2)(X +
√

3)(X−
√

3) ,
(b) g(X) = (X2 + 2)(X2 + 3) = (X + i

√
2)(X− i

√
2)(X + i

√
3)(X− i

√
3),

(c) h(X) = (X2 −
√

5)(X2 +
√

5) = (X− 5
1
4 )(X + 5

1
4 )(X− i 5

1
4 )(X + i 5

1
4 ).

By Theorem 7.1, a splitting field for these polynomials f (X), g(X) and h(X) is given by

(a) Q(
√

2,−
√

2,
√

3,−
√

3) = Q(
√

2,
√

3),
(b) Q(i

√
2,−i
√

2, i
√

3,−i
√

3) = Q(i
√

2, i
√

3) and
(c) Q(5

1
4 ,−5

1
4 , i 5

1
4 ,−i 5

1
4 ) = Q(i, 5

1
4 )

respectively.

The degrees are as follows (justify each equality below):

(a) [Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)] · [Q(
√

2) : Q] = 2 · 2 = 4,
(b) [Q(i

√
2, i
√

3) : Q] = [Q(i
√

2, i
√

3) : Q(i
√

2)] · [Q(i
√

2) : Q] = 2 · 2 = 4 and
(c) [Q(i, 5

1
4 ) : Q] = [Q(i, 5

1
4 ) : Q(5

1
4 )] · [Q(5

1
4 ) : Q] = 2 · 4 = 8.

Moreover, we have the following (justify each of these):

(a) Q(
√

2,
√

3) = Q(
√

2 +
√

3),
(b) Q(i

√
2, i
√

3) = Q(i
√

2 + i
√

3) and
(c) Q(i, 5

1
4 ) = Q(i + 5

1
4 ).

Problem 7.8 on page 70:
Write f1(X) = X4 + 1, f2(X) = X4 + 4, f3(X) = (X4 + 1)(X4 + 4) and f4(X) = (X4− 1)(X4 + 4)

in Q[X]. As in Exercise 7.7, using Fundamental theorem of algebra. We first factor them over C

and using Theorem 7.1 we find splitting fields. We find that

(a) f1(X) = X4 + 1 = (X2 + i)(X2 − i) = (X− 1+i√
2
)(X− 1−i√

2
)(X− −1+i√

2
)(X− −1−i√

2
),

(b) f2(X) = X4 + 4 = (X2 + 2i)(X2 − 2i) = (X− 1− i)(X− 1 + i)(X + 1 + i)(X + 1− i),
(c) f3(X) = f1(X) f2(X) which is product of linear factors in f(X) and f2(X),
(d) f4(X) = (X4 − 1) f2(X) = (X − 1)(X + 1)(X − i)(X + i) f2(X) and we already have linear

factors of f2(X).
We write L1, L2, L3 and L4 a splitting field for f1(X), f2(X), f3(X) and f4(X) respectively. We have

(a) L1 = Q( 1+i√
2

, 1−i√
2

, −1+i√
2

, −1−i√
2
) = Q( 1√

2
, i) = Q(

√
2, i)

(b) L2 = Q(1 + i, 1− i,−1 + i,−1− i) = Q(i)
(c) L3 = Q( 1+i√

2
, 1−i√

2
, −1+i√

2
, −1−i√

2
, 1 + i, 1− i,−1 + i,−1− i) = Q(

√
2, i) and

(d) L4 = Q(1,−1, i,−i, 1 + i, 1− i,−1 + i,−1− i) = Q(i).
There degrees are as follows:

(a) [L1 : Q] = [Q(
√

2, i) : Q] = [Q(
√

2, i) : Q(i)] · [Q(i) : Q] = 2 · 2 = 4,
(b) [L2 : Q] = [Q(i) : Q] = 2,
(c) [L3 : Q] = [Q(

√
2, i) : Q] = 4 and

(d) [L4 : Q] = [Q(i) : Q] = 2.

Verify the following: Q(
√

2, i) = Q(
√

2 + i).
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Problem 7.9 on page 70:
Let K be a field and let f (X) ∈ K[X] be a monic polynomial of degree n > 0. Let L : K be a splitting
field extension for f (X). We want to prove that [L : K] divides n!. We prove this by induction on
the degree( f (X)) = n.
If n = 1, f (X) splits in K then L = K and there is nothing to prove.
Assume the theorem true for all n′ > 0 and n′ < n.
Case 1: f (X) is irreducible. By Theorem 7.2, K(α) ' K[X]/( f ) is a field in which f (X) has a
root, and [K(α) : K] = n. So f (X) = (X − α)g(X) ∈ K(α)[X] for some g(X) ∈ K(α)[X] and
degree(g(X)) = n − 1. By induction hypothesis, if L : K(α) is a splitting field for g(X)then
[L : K(α)] divides (n− 1)!. Then [L : K] = [L : K(α)] · [K(α) : K] = [L : K(α)]n which divides n!.
Case 2: f (X) is reducible.
Say that f (X) = g(X)h(X), where degree(g(X)) = r and degree(h(X)) = s, with 0 < r, s < n and
r + s = n. By induction hypothesis, if L1 : K is a splitting field extension for g(X) then [L1 : K]
divides r!. Consider h(X) ∈ L1[X]. If L : L1 is a splitting field extension for h(X) then [L : L1]
divides s! (by the induction hypothesis). Note that f (X) splits in L. In fact, it is clear that L : K is a
splitting field extension for f (X) since it is generated by all the roots of f (X) which are precisely
the roots of h(X) and g(X). Now the degree [L : K] = [L : L1] · [L1 : K], which divides r!s!. Since
n = r + s, we know that r!s! divides n!, so [L : K] divides n!.

Problem 7.10 on page 70: Let f (X) = X3 − 5 ∈ K[X] where K = Z7, Z11 or Z13. Note that f (X) is
irreducible over K if and only if f (X) has a root inK.

Case 1: K = Z7
We see that f (0) = −5 6= 0, f (1) = −4 6= 0, f (2) = 3 6= 0, f (3) = 1 6= 0, f (4) = −32 = 3 6=
0, f (5) = −13 = 1 6= 0, f (6) = −6 = 1 6= 0 therefore f (X) is irreducible over Z7. Let α be a root
of f (X) in an extension Z7(α) : Z7 which has degree 3. Then we get that

f (X) = X3 − 5 = (X− α)(X− 2α)(X− 4α)

that is f (X) splits over Z7(α). Therefore Z7(α) : Z7 is a splitting field extension for f (X).

Case 2: K = Z11
Note that f (5) = 22 = 0in Z11, therefore f (X) is reducible whose one factor is X − 3. We get
f (X) = (X− 3)(X2 + 3X− 2). We check that g(X) := X2 + 3X− 2 is irreducible since it does not
have a root in Z11. Checking: g(0) = −2 6= 0, g(1) = 2 6= 0, f (2) = 8 6= 0, f (3) = 5 6= 0, f (4) =
4 6= 0, f (5) = 5 6= 0, f (6) = 8 6= 0, f (7) = 2 6= 0, f (8) = −2 6= 0, f (9) = −4 6= 0, f (10) = −4 6= 0.
Note that a splitting field for g(X) is also a splitting field for f (X). Let β be a root of g(X) in an
extension Z11(β) : Z11 then Z11(β) is a splitting field for g(X). By Example 4 in the book Z11(β)

is isomorphic to Z11(
√

6) since 6 is the discriminant of g(X).

Case 3: K = Z13
Check that 7, 8, 11 ∈ Z13 are roots of f (X) = X3 − 5 ∈ Z13[X]. Then

f (X) = (X− 7)(X− 8)(X− 11).

That is f (X) splits over Z13 itself. Therefore Z13 itself is a splitting field for f (X).


