NAP 2019, MODULE II, CLASS #6, MAY 30, 2019

MICHEL WALDSCHMIDT

• Answer to questions:

Cayley – Hamilton Theorem.

 α transcendental over $K, f \in K[x]$ not constant, then $K(\alpha)$ is a finite extension of $K(f(\alpha))$.

• Reduction modulo p of a polynomial of $\mathbb{Z}[x]$. If the polynomial is reducible, its reduction (modulo a prime p which does not divide the leading term) is reducible. Hence if one of the reductions is irreducible, the polynomial is irreducible.

- The converse is not true. The polynomial $x^4 + 1$ is reducible modulo p for all p but irreducible over \mathbb{Z} (no proof).
- Eisenstein criterion. Proof for $\mathbb{Z}[x]$ using reduction modulo p.

• For any $n \ge 1$, there exists an irreducible polynomial over \mathbb{Z} of degree n (for instance $x^n - 2$), hence there exists a finite extension of \mathbb{Q} of degree n.

• $x^n + px + p^2$ is irreducible over Z. Same proof as for Eisenstein criterion.

• Last chapter: construction with ruler and compass.

- Definition: constructible point in \mathbb{R}^2 , constructible number in \mathbb{R} .
- \bullet Theorems:

The set of constructible numbers is a subfield of \mathbb{R} .

A number α is constructible if and only if there exists a set $\{\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_n\}$ of real numbers with $\alpha_0 = 1$ and $\alpha_n = \alpha$ such that

$$\alpha_j^2 \in \mathbb{Q}(\alpha_0, \alpha_1, \dots, \alpha_{j-1}) \quad (1 \le j \le n).$$

Consequence: a constructible number is algebraic over \mathbb{Q} of degree a power of 2. Squaring the circle, doubling the cube cannot be done with ruler and compass.