NAP 2019, MODULE II, CLASS #4, MAY 27, 2019

MICHEL WALDSCHMIDT

- **Theorem 4.6**. For an extension L: K, equivalent conditions:
 - (i) $[L:K] < \infty$.
 - (ii) L: K algebraic and finitely generated.
 - (iii) there exist finitely many elements $\alpha_1, \ldots, \alpha_n$ in L algebraic over K such that $L = K(\alpha_1, \ldots, \alpha_n)$.
- Theorem 4.7. Transitivity of algebraic extensions.
- Definition: K-monomorphisme. Examples. Complex conjugation. Conjugates in C of an element which is algebraic over Q. There are d monomorphisms of Q(α) into C when α is algebraic of degree d over Q.
- Theorem 4.8. When L: K is an algebraic extension, a K-monomorphism $L \to L$ is onto.