NAP 2019, MODULE II, CLASS #2, MAY 23, 2019

MICHEL WALDSCHMIDT

- Finite extensions. Degree.
- Examples: take two fields K and L among the following ones

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i), \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(i,\sqrt{2})$

such that L is an extension of K. Is L: K a finite extension? If the answer is yes, give the degree and a basis of L over K.

- Which are the subfields of \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(i,\sqrt{2})$?
- Tower law for the degree of field extensions. Examples. Proof of the law. Some consequences.
- Prime field: $\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$. These are the fields without proper subfield.
- Algebraic elements, transcendental elements.
- Example of a transcendental element: if $x \in K(T) \setminus K$, then x is transcendental over K (exercise 4.8 p. 47).
- Algebraic extension. Examples.
- Proof that a finite extension is algebraic.
- The field of algebraic numbers. This field is not a finite extension of Q.

Fact : if α and β are algebraic numbers, with $\alpha = \alpha_1$ root of a polynomial in $\mathbb{Q}[X]$ with complex roots $\alpha_1, \ldots, \alpha_d$, and with $\beta = \beta_1$ root of a polynomial in $\mathbb{Q}[X]$ with complex roots β_1, \ldots, β_m , then the polynomials

$$\prod_{i=1}^{d} \prod_{j=1}^{m} (X - \alpha_i - \beta_j) \text{ and } \prod_{i=1}^{d} \prod_{j=1}^{m} (X - \alpha_i \beta_j)$$

have coefficients in \mathbb{Q} (no proof yet) and roots $\alpha + \beta$ and $\alpha\beta$ respectively.

• The field $\mathbb{Q}(e^{2i\pi/p})$ with p prime.