NAP 2019, MODULE II, CLASS #1, MAY 22, 2019

MICHEL WALDSCHMIDT

1. Answer to questions:

Short history of Galois Theory Irrational numbers. Irrationality of $\sqrt{2}$: proof using a rectangle of sides $1 + \sqrt{2}$ and 1. Algebraic numbers, examples. Transcendental numbers: Liouville $\sum_{n\geq 1} 2^{-n!}$, Hermite e, Lindemann π , squaring the circle.

2.Garling p. 40 – 41

Recall the constructions $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$. Fields, extensions; subfields. Examples: \mathbb{Q} , \mathbb{R} , \mathbb{C} , K(X), $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(i,\sqrt{2})$. Fact: when L: K is an extension, then L is a K-vector space. Degree of a field extension [L:K]. Exercise: give the degree of the extension L: K for L and K in the previous list.

Schedule:

- class 1, Wednesday, May 22, 4:30 6:00
- class 2, Thursday, May 23, 6:00 7:30
- class 3, Friday, May 24, 4:30 6:00
- class 4, Monday, May 27, 6:00 7:30
- class 5, Wednesday, May 29, 4:30 6:00
- class 6, Thursday, May 30, 6:00 7:30
- class 7, Friday, May 31, 4:30 6:00
- class 8, Monday, June 3, 4:30 6:00

Problem Set # 1: Exercises of Garling's notes, starting with 4.1 p. 42. Due Tuesday, May 28, 10 pm Kathmandu Time