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• Problem 5.3 p. 50.
Let K be a finite field, q the number of elements in K. Given a polynomial f of degree d in

K[x], we list the polynomials g of degree ≤ d/2 with coefficients in K. The set of these polynomials
is finite (with at most q(d/2)+1 elements). For each of them we divide f by g (using the Euclidean
division) and we check whether the remainder is 0 or not. If one remainder is 0, then this g divides
f . Otherwise f is irreducible in K[x].

• Problem 5.4 p. 50.
As suggested in the assignment, we first check that f−yg is irreducible as a polynomial in x with

coefficients in the ring K[y], where x and y are independent variables and f, g are in K[x] without
common factor.

Indeed, if f − yg factors as hk with h and k in K[y][x] = K[x, y], then the degree in y of one
of the two polynomials h, k is 1 and the degree of the other is 0; therefore one of the two factors is
in K[x] and divides both f and g. Since f and g are relatively prime in K[x], we deduce that this
factor is a constant. Hence f − yg is irreducible.

We now use Gauss’s Lemma (Corollary of Theorem 3.12). The quotient field of the ring R = K[y]
is F = K(y). Since f − yg is irreducible over the ring R = K[y], it is also irreducible over the ring
F [x] = K(y)[x].

• Problem 5.5 p. 51.
Compare with Problems 4.8 p. 47 and 4.10 p. 48.
Since β ∈ K(α), there exist polynomials P and Q with Q 6= 0 such that β = P (α)/Q(α). There

is such a pair of polynomials that are relatively prime in K[x]. Let d = max{degP, degQ}. Since
β 6∈ K, the rational fraction P/Q is not constant and d ≥ 1. The polynomial P (x) − βQ(x) ∈
Q(β)[x] has degree d and vanishes at α, hence α is algebraic of degree ≤ d over K(β) and therefore
K(α) : K(β) is a finite extension of degree ≤ d. Since K(α) has infinite degree over K, it follows
that K(β) has also infinite degree over K, which means that β is transcendental over K.

From Problem 5.4 p. 50. we deduce that the polynomial P (x) − βQ(x) is irreducible over the
field K(β) (recall that, β being transcendental over K, the field K(β) is isomorphic to the field
of rational fractions K(y)). Hence P (x) − βQ(x) is the minimal polynomial of α over K(β) and
therefore [K(α) : K(β)] = d.

• Problem 5.6 p. 51–52.
The polynomial

f(x) = a0 + a1x+ · · ·+ ad−1x
d−1 + adx

d

is irreducible if and only if the polynomial

xdf(1/x) = a0x
d + a1x

d−1 + · · ·+ ad−1x+ ad

is irreducible.

• Problem 5.7 p. 52.
Use Eisenstein criterion with R = Z, f = xn − p. The coefficients are relatively prime, p divides

all coefficients apart from the leading one fn = 1, and p2 does not divide the constant coefficient
f0 = −p.



• Problem 5.8 p. 52.
For each n ≥ 1 the field A of real algebraic numbers contains n

√
2 which has degree n over Q

(Problem 5.7), hence the degree of A over Q is ≥ n. Therefore [A : Q] =∞.

• Problem 5.9 p. 52.
Let E and F be two subfields of a field L which are finite extensions of K of relatively prime

degrees m and n. The degree of the field K(E,F ) over K is ≤ mn (Problem 4.2 p. 45). Since
K(E,F ) contains E and F , this degree is a multiple of m and n, hence it is mn.

Now by induction we deduce from Problem 5.7 that the degree over Q of the field

Q(
2
√

2,
3
√

2,
5
√

2, . . . ,
p
√

2)

is the product of the prime numbers 2 · 3 · 5 · · · p.
If we had a linear relation

a2
√

2 + a3
3
√

2 + a5
5
√

2 + · · ·+ ap
p
√

2 = 0

with a2, a3, . . . , ap in Q and ap 6= 0, it would imply that the degree of p
√

2 over Q is not a multiple of
p, a contradiction with Problem 5.7.

• Problem 5.10 p. 52.
We could extend Eisenstein Criterion to Z[i] but we can also prove the results as follows.
The two polynomials x5 − 4x + 2 and x4 − 4x + 2 are irreducible over Q by Eisenstein criterion

with p = 2.
Let α be a root in C of x5−4x+2. The degree over Q of Q(α) is 5, the degree over Q of Q(i) is 2,

and 5, 2 are relatively prime. Hence the field Q(i, α) has degree 10 over Q, which implies that it has
degree 5 over Q(i). Therefore x5 − 4x+ 2 is the minimal polynomial of α over Q(i): it is irreducible
over Q(i).

The polynomial x4 − 4x + 2 has two real roots (one < 1 and one > 1). Let β be one of them.
The field Q(β) is contained in R, hence it does not contain i, and i has degree 2 over Q(β). The
field Q(i, β) has degree 8 over Q and 4 over Q(i), which implies that the polynomial x4 − 4x + 2 is
the minimal polynomial of β over Q(i): it is irreducible over Q(i).

• Problem 5.11 p. 53.
Set y = x− 1. We have

1 + x+ · · ·+ xp−1 =
xp − 1

x− 1
=

(y + 1)p − 1

y
= p+

p(p− 1)

2
y +

p(p− 1)(p− 2)

6
y2 + · · ·+ pyp−1 + yp.

Each coefficient apart from the leading one is divisible by p:

p divides
p!

(p− j)!j!
=
p(p− 1) · · · (p− j + 1)

j!
for 1 ≤ j ≤ p− 1

and the constant coefficient p is not divisible by p2. Hence, by Eisenstein’s Criterion, this polynomial
is irreducible in Q[y], from which the desired result follows.

• Problem 5.12 p. 53.
Let α = eiθ with θ = 2π/7. We have α7 = 1 and α 6= 1, hence α is a root of the polynomial

f(x) =
x7 − 1

x− 1
= 1 + x+ x2 + x3 + x4 + x5 + x6.

From Problem 5.11 we deduce that this polynomial is irreducible over Q, hence it is the minimal
polynomial of α over Q.
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We have 2α = cos θ + i sin θ and cos θ = α + α−1. This last relation shows that α is root of the
quadratic polynomial x2− x cos θ+ 1 ∈ Q(cos θ)[x], hence α is algebraic of degree ≤ 2 over Q(cos θ).
Notice that cos θ ∈ R and α 6∈ R, hence Q(cos θ) 6= Q(α) and therefore [Q(α) : Q(cos θ)] = 2. From

[Q(α) : Q] = [Q(α) : Q(cos θ)][Q(cos θ) : Q],

we deduce [Q(cos θ) : Q] = 3.
Since the polynomial f is reciprocal: f(x) = x6f(1/x), it follows that there exists a polynomial

g ∈ Q[y] such that f(x) = x3g(x+ x−1). Writing

y = x+ x−1, x2 + x−2 = y2 − 2, x3 + x−3 = y3 − 3y,

we obtain the irreducible polynomial of 2 cos θ over Q:

g(y) = y3 + y2 − 2y − 1.

• Problem 6.4 p. 57.
Using simple geometric constructions, one proves:

• (x, y) is constructible if and only if (x, 1) and (y, 1) are constructible.
• If (x, y) is constructible, then (x+ y, 1) and (xy, 1) are constructible.
• If (x, 1) is constructible and x 6= 0, then (1/x, 1) is constructible.

As a consequence, the set L of x ∈ R such that (x, 1) is constructible is a subfield of R, and the
set of constructible points is L× L.

The answer to Problem 6.4 follows from these remarks.

• Problem 6.5 p. 57.
The degree over Q of the field Q(21/3) is 3, not a power of 2, hence Theorem 6.1 shows that it is

not possible to duplicate the cube.

• Problem 6.6 p. 57.
The polynomial x9 − 1 splits as

(x3 − 1)(x6 + x3 + 1) = (x− 1)(x2 − x+ 1)(x6 + x3 + 1).

The number e2iπ/9 is a root of the polynomial f(x) = x6 + x3 + 1. Set y = x− 1. Then

f(y + 1) = y6 + 6y5 + 15y4 + 21y3 + 18y2 + 9y + 3,

which is irreducible by Eistenstein criterion for p = 3. Therefore e2iπ/9 has degree 6 over Q, not a
power of 2.

From Problem 5.11 we deduce that the number e2iπ/7 has also degree 6 over Q.
Therefore (Theorem 6.1) e2iπ/9 and e2iπ/7 are not constructible; the regular nonagon and the

regular heptagon cannot be constructed using ruler and compasses.

• Problem 6.7 p. 58.
(a) It has been explained in § 6.1 that any point (r1, r2) ∈ Q2 can be constructed (this follows

also from Problem 6.4, say with P = (1, 0)). Assume K is a subfield of R such that any point in K2

can be constructed. Let (x, y) ∈ R2 such that [K(x, y) : K] = 2. Solving the quadratic equation,
there is a number d ∈ K such that x and y are of the form a+ b

√
d with a and b in K. Since (d, 1)

is constructible, also (
√
d, 1) is constructible. From Problem 6.4 it follows that all points of the form

(a+ b
√
d, 1) with a and b in K are constructible. One deduces that (x, y) is constructible.

(b) follows from (a) by induction.
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