NAP 2019, MODULE II, HOMEWORK ASSIGNMENT #1
Michel Waldschmidt

Homework assignment, May 28, 2019.

e Problem 4.1 p. 42.
Assume [L : K] is prime. If E is an extension of K contained in L, then the tower law yields
[L: K] =|[L:E|E : K], hence
— either [L : E] = 1, which means E = L,
— or else [E : K] =1, which means F = K.
Hence the intermediate fields are only L and K.

e Problem 4.2 p. 45.
If one of the two extensions K : K, K5 : K is not finite, then K (K, K3) : K is not a finite extension,
and the result is true.

Assume now that both K : K and K, : K are finite. In this case K(K;, Ks) : K is a finite

extension. Replacing L by K (K, Ks3), there is no loss of generality to assume that L : K is a finite
extension, hence an algebraic extension.
(a) To start with, let us show that if L : K is an algebraic extension and A a subset of L which is a
ring and a K—vector space, then A is a subfield of L. We need to prove that any nonzero element ¢
in A has its inverse 1/t in A. By assumption ¢ is algebraic over K. Let ag + a1t + - -+ + a,t"™ = 0 be
a polynomial relation for ¢ with a; € K and ay # 0. Then

t7' = —(ar/ag) — (az/ag)t — - -+ — (an/ao)t" ™"

and the assumptions imply that the right hand side is in A.

(b) Consider the subset A of L of finite sums z1y; + - - - + X, Y, Where x; € Ky and y; € K.

The sum and the product of two elements in A is again in A, hence A is a subring of L.

The product of an element of A by an element of K is in A, hence A is a subspace of the K—vector
space L.

(c) Let eq,...,eq be a basis of K; as a K—vector space and fi, ..., f,, a basis of Ky as a K—vector
space. Then d = [K; : K], m = [K, : K] and any element in A is a finite sum of a;je; f;, hence
{e;.f; | 1<i<d, 1<j<m}isa generating subset of A as a K—vector space. This shows that
the dimension of A over K is < [K : K|[K; : K].

(d) Using (a), it follows that the field K (K7, K3) is A, hence this field is an extension of K of degree
S [Kl . K][KQ : K]

e Problem 4.3 p. 45.

Let F(z) = det(zl — T,) be the characteristic polynomial of 7,. By the Cayley—Hamilton
Theorem, F(T,) = 0. Since T)* = T, is the multiplication by o, the endomorphism F(T,) of
K(a) is the multiplication by F(«). Hence F(a) = 0. Now F'(x) is a monic polynomial in K|x] of
degree [K(«) : K. Hence it is the minimal polynomial of o over K.

Here is another proof. Let f(x) = 2¢ + ag_12%471 + - -+ 4+ a17 + ag be the minimal polynomial of
a over K. A basis of K(a) over K is (1,c,...,a% ). For 0 < j < d— 1, we have T,(a?) = o/t
while for j = d — 1 we have

T.(a"™ ) =a%= —ay — a1 — -+ — ag_10%7".



This means that in this basis, the matrix of T}, is

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1
—@p —a1 —Qz - —0d-2 —Qd-1

The characteristic polynomial of this matrix is f(x).

e Problem 4.4 p. 45.
A polynomial of degree 3 is irreducible over a field K if and only if it has no root in K[l
The roots p/q in Q, with ged(z,y) = 1, of a polynomial

d—1

d
agr” + ag—1T et a4 ag

with coefficients a; € Z and agay # 0, have the property that ag divides p and a, divides ¢. In
particular when ay = £1 and a4 = %1 the only possible roots are 1 and —1. Here neither 1 not —1
is root of 23 4 3z + 1, hence this polynomial is irreducible over Q.

We have a® = —3a — 1, ™! = —a? — 3.

There are several ways of finding the answer for (1 + )}, namely
1 1 4
1 -1 — 2 - -,
(1+a) 30 —gat g

One solution is to write
(14 a)™! = aya® + aya + ag,

namely (a0 +aja+ag)(1+a) = 1, to develop using a® = —3a — 1 and to solve the system of three
equations in three unknowns
ay +ay = 0,
agp + a1 — 3&2 = 0,
ap — a2 = 1.

Another solution is to write the Euclidean division in Q[z] of the polynomial 2® + 3z + 1 by x + 1:
P43 +1l=(+1D)(2* -z +4) -3

and to evaluate at z = a:
0=(a+1)(a®—a+4)—3.

e Problem 4.5 p. 45.

Let j be a complex root of 22 4+ + 1 (notice that j> = 1 and j # 1), let a = j + V2, K = Q,
L=Q(j), F=Q(+2). Wehave [E: Q] =3, [L: Q] = 2. It follows that L(j) = E(v/2) = Q(a) is the
field Q(FE, L). From Problem 4.2 we deduce that it has degree < 6 over Q. Since it contains a subfield
of degree 2 and a subfield of degree 3 over Q, it has degree 6 over Q. Notice that [L(«) : L] = 2 and
[L : K] = 3 are relatively prime.

The minimal polynomial of a over L is

(x—j)? —2=2a—j2* +j%r -3

(with j2 = —j — 1), its coefficients are not in K.

! This is true also for polynomials of degree 2, but not for polynomials of higher degree.
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e Problem 4.6 p. 45.
Since [L : K| # 1, we have L # K. Let a € L'\ K. The field K(«) is a subfield of L containing
K, it is not K, hence it is L (Problem 4.1).

e Problem 4.7 p. 47.

Since K is countable, the set of polynomials with coefficients in K is also countable, hence the
set of irreducible polynomials in K[z] is countable, and each of them has only finitely many roots.
Any element in L is a root of an irreducible polynomial with coefficients in K, hence L is countable.

Since Q is countable, the set Q of algebraic numbers is also countable. Since R is not countable,
the set of transcendental numbers is not countable. In particular it is not empty.

e Problem 4.8 p. 47.

(a) Write f(z) = agr?+ag_12¥ 1 +---+ag withd > 1, a; € K and a4 # 0. Since « is transcendental,
it makes sense to say that the degree of f(a) in v is d. For m > 1 the degree in « of f(«)™ is md.
Therefore the elements 1, f(«), f(a)?, ..., f(a)™, ... are linearly independent (they have distinct
degrees). This means that f(«a) is transcendental over K.

Remark. This shows that when « is transcendental over K, the only elements in K[a] which are
algebraic over K are the elements in K. For solving Problem 4.10 below, we will need to prove more:
the only elements in K («) which are algebraic over K are the elements in K.

(b) If 3 is algebraic over K, for f € K[x] we have f(f) € K(8), and K () is an algebraic extension
of K, therefore in this case f(/) is algebraic over K. Hence if f(3) is transcendental over K then [
is transcendental over K.

e Problem 4.9 p. 48.

The answer is no in general. For instance, since the set of 2¢ = €82 t € R, ¢ transcendental,
is not countable, it contains transcendental numbers, and then the numbers a = 2* and b = 1/t are
both transcendental with a® = 2 algebraic.

Also a® may be transcendental: fix a transcendental number a; the set of ¢ € R with a¢ algebraic
is countable, hence the set of b € R with a’ transcendental is not countable, therefore it contains
transcendental elements.

Remark. A theorem of transcendental number theory (Gel’fond — Schneider, 1934) states that if a
and b are algebraic with a # 0, b ¢ Q, and loga # 0, then a® = €*!°8¢ is transcendental. For instance
2V2 ig transcendental, also e = (—1)7" is transcendental.

e Problem 4.10 p. 48.

If K(«, 8) is a simple extension of K, it can be written K () for some v € K(«, ). Since K(«, 3)
is not an algebraic extension of K (it contains the transcendental element (), it follows that ~ is
transcendental over K.

Write a = P()/Q(7). Since 7 is root of the polynomial P(x) — aQ(x), it is algebraic over K («)
and the extension K (7) : K(«) is algebraic. From Theorem 4.7 we deduce that K(«) : K is not an
algebraic extension, hence « is transcendental over K.

This means that the only elements in a simple transcendental extension K(v) : K which are
algebraic over K are the elements in K. See also exercises 4.8 and 5.5.

e Problem 4.11 p. 48.
Take L = K(x) (the field of rational fractions in one variable over K) and 7 the monomorphism

which maps z to z2:
(P (56)) P(x?)
T =
Qx))  Qz?)
The image of 7 is the subfield K (z?), and L is a quadratic extension of K (z?).
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