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• Problem 4.1 p. 42.
Assume [L : K] is prime. If E is an extension of K contained in L, then the tower law yields

[L : K] = [L : E][E : K], hence
— either [L : E] = 1, which means E = L,
— or else [E : K] = 1, which means E = K.
Hence the intermediate fields are only L and K.

• Problem 4.2 p. 45.
If one of the two extensions K1 : K, K2 : K is not finite, then K(K1, K2) : K is not a finite extension,
and the result is true.

Assume now that both K1 : K and K2 : K are finite. In this case K(K1, K2) : K is a finite
extension. Replacing L by K(K1, K2), there is no loss of generality to assume that L : K is a finite
extension, hence an algebraic extension.
(a) To start with, let us show that if L : K is an algebraic extension and A a subset of L which is a
ring and a K–vector space, then A is a subfield of L. We need to prove that any nonzero element t
in A has its inverse 1/t in A. By assumption t is algebraic over K. Let a0 + a1t+ · · ·+ ant

n = 0 be
a polynomial relation for t with aj ∈ K and a0 6= 0. Then

t−1 = −(a1/a0)− (a2/a0)t− · · · − (an/a0)t
n−1

and the assumptions imply that the right hand side is in A.

(b) Consider the subset A of L of finite sums x1y1 + · · ·+ xmym where xi ∈ K1 and yi ∈ K2.
The sum and the product of two elements in A is again in A, hence A is a subring of L.
The product of an element of A by an element of K is in A, hence A is a subspace of the K–vector

space L.

(c) Let e1, . . . , ed be a basis of K1 as a K–vector space and f1, . . . , fm a basis of K2 as a K–vector
space. Then d = [K1 : K], m = [K2 : K] and any element in A is a finite sum of aijeifj, hence
{eifj | 1 ≤ i ≤ d, 1 ≤ j ≤ m} is a generating subset of A as a K–vector space. This shows that
the dimension of A over K is ≤ [K1 : K][K2 : K].

(d) Using (a), it follows that the field K(K1, K2) is A, hence this field is an extension of K of degree
≤ [K1 : K][K2 : K].

• Problem 4.3 p. 45.
Let F (x) = det(xI − Tα) be the characteristic polynomial of Tα. By the Cayley–Hamilton

Theorem, F (Tα) = 0. Since Tmα = Tαm is the multiplication by αm, the endomorphism F (Tα) of
K(α) is the multiplication by F (α). Hence F (α) = 0. Now F (x) is a monic polynomial in K[x] of
degree [K(α) : K]. Hence it is the minimal polynomial of α over K.

Here is another proof. Let f(x) = xd + ad−1x
d−1 + · · · + a1x + a0 be the minimal polynomial of

α over K. A basis of K(α) over K is (1, α, . . . , αd−1). For 0 ≤ j < d − 1, we have Tα(αj) = αj+1,
while for j = d− 1 we have

Tα(αd−1) = αd = −a0 − a1α− · · · − ad−1αd−1.



This means that in this basis, the matrix of Tα is
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −ad−2 −ad−1


The characteristic polynomial of this matrix is f(x).

• Problem 4.4 p. 45.
A polynomial of degree 3 is irreducible over a field K if and only if it has no root in K1.
The roots p/q in Q, with gcd(x, y) = 1, of a polynomial

adx
d + ad−1x

d−1 · · ·+ a1x+ a0

with coefficients ai ∈ Z and a0ad 6= 0, have the property that a0 divides p and ad divides q. In
particular when a0 = ±1 and ad = ±1 the only possible roots are 1 and −1. Here neither 1 not −1
is root of x3 + 3x+ 1, hence this polynomial is irreducible over Q.

We have α3 = −3α− 1, α−1 = −α2 − 3.
There are several ways of finding the answer for (1 + α)−1, namely

(1 + α)−1 =
1

3
α2 − 1

3
α +

4

3
·

One solution is to write
(1 + α)−1 = a2α

2 + a1α + a0,

namely (a2α
2 +a1α+a0)(1 +α) = 1, to develop using α3 = −3α−1 and to solve the system of three

equations in three unknowns 
a1 + a2 = 0,

a0 + a1 − 3a2 = 0,
a0 − a2 = 1.

Another solution is to write the Euclidean division in Q[x] of the polynomial x3 + 3x+ 1 by x+ 1:

x3 + 3x+ 1 = (x+ 1)(x2 − x+ 4)− 3

and to evaluate at x = α:
0 = (α + 1)(α2 − α + 4)− 3.

• Problem 4.5 p. 45.
Let j be a complex root of x2 + x + 1 (notice that j3 = 1 and j 6= 1), let α = j + 3

√
2, K = Q,

L = Q(j), E = Q( 3
√

2). We have [E : Q] = 3, [L : Q] = 2. It follows that L(j) = E( 3
√

2) = Q(α) is the
field Q(E,L). From Problem 4.2 we deduce that it has degree ≤ 6 over Q. Since it contains a subfield
of degree 2 and a subfield of degree 3 over Q, it has degree 6 over Q. Notice that [L(α) : L] = 2 and
[L : K] = 3 are relatively prime.

The minimal polynomial of α over L is

(x− j)3 − 2 = x3 − jx2 + j2x− 3

(with j2 = −j − 1), its coefficients are not in K.

1This is true also for polynomials of degree 2, but not for polynomials of higher degree.
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• Problem 4.6 p. 45.
Since [L : K] 6= 1, we have L 6= K. Let α ∈ L \K. The field K(α) is a subfield of L containing

K, it is not K, hence it is L (Problem 4.1).

• Problem 4.7 p. 47.
Since K is countable, the set of polynomials with coefficients in K is also countable, hence the

set of irreducible polynomials in K[x] is countable, and each of them has only finitely many roots.
Any element in L is a root of an irreducible polynomial with coefficients in K, hence L is countable.

Since Q is countable, the set Q of algebraic numbers is also countable. Since R is not countable,
the set of transcendental numbers is not countable. In particular it is not empty.

• Problem 4.8 p. 47.
(a) Write f(x) = adx

d+ad−1x
d−1 + · · ·+a0 with d ≥ 1, ai ∈ K and ad 6= 0. Since α is transcendental,

it makes sense to say that the degree of f(α) in α is d. For m ≥ 1 the degree in α of f(α)m is md.
Therefore the elements 1, f(α), f(α)2, . . . , f(α)m, . . . are linearly independent (they have distinct
degrees). This means that f(α) is transcendental over K.
Remark. This shows that when α is transcendental over K, the only elements in K[α] which are
algebraic over K are the elements in K. For solving Problem 4.10 below, we will need to prove more:
the only elements in K(α) which are algebraic over K are the elements in K.

(b) If β is algebraic over K, for f ∈ K[x] we have f(β) ∈ K(β), and K(β) is an algebraic extension
of K, therefore in this case f(β) is algebraic over K. Hence if f(β) is transcendental over K then β
is transcendental over K.

• Problem 4.9 p. 48.
The answer is no in general. For instance, since the set of 2t = et log 2, t ∈ R, t transcendental,

is not countable, it contains transcendental numbers, and then the numbers a = 2t and b = 1/t are
both transcendental with ab = 2 algebraic.

Also ab may be transcendental: fix a transcendental number a; the set of c ∈ R with ac algebraic
is countable, hence the set of b ∈ R with ab transcendental is not countable, therefore it contains
transcendental elements.
Remark. A theorem of transcendental number theory (Gel’fond – Schneider, 1934) states that if a
and b are algebraic with a 6= 0, b 6∈ Q, and log a 6= 0, then ab = eb log a is transcendental. For instance
2
√
2 is transcendental, also eπ = (−1)−i is transcendental.

• Problem 4.10 p. 48.
If K(α, β) is a simple extension of K, it can be written K(γ) for some γ ∈ K(α, β). Since K(α, β)

is not an algebraic extension of K (it contains the transcendental element β), it follows that γ is
transcendental over K.

Write α = P (γ)/Q(γ). Since γ is root of the polynomial P (x)−αQ(x), it is algebraic over K(α)
and the extension K(γ) : K(α) is algebraic. From Theorem 4.7 we deduce that K(α) : K is not an
algebraic extension, hence α is transcendental over K.

This means that the only elements in a simple transcendental extension K(γ) : K which are
algebraic over K are the elements in K. See also exercises 4.8 and 5.5.

• Problem 4.11 p. 48.
Take L = K(x) (the field of rational fractions in one variable over K) and τ the monomorphism

which maps x to x2:

τ

(
P (x)

Q(x)

)
=
P (x2)

Q(x2)
·

The image of τ is the subfield K(x2), and L is a quadratic extension of K(x2).
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