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• With excellent class participation, we used symmetries of the square (viewed as
permutations of the vertices) to find a dihedral group of order 8 inside S4, namely,
{(1), (1234), (13)(24), (1432), (13), (24), (12)(34), (14)(23)} = 〈(1234), (13)〉. Pointed
out that it’s not normal and that there are three such subgroups of S4, all of them
conjugates.

• We explained effect of conjugation on cycles. Showed details for 3-cycles:

g(a b c)g−1 = (g(a) g(b) g(c))

(in Garlingspeak).

• Defined vector space over K.

•Defined linear dependence and linear independence for finite sets of vectors. Maybe
mumbled something about an infinite set being linearly independent if and only if
each finite subset is linearly indepent. Warned students that it is illegal to take
infinite linear combinations, e.g.,

∑∞
i=1 aivi.

• Proved in detail the basic stuff on vector spaces: Theorems 1.1–1.4, Corollary
to Theorem 1.2, Corollary 1. Students should read about linear mappings (homo-
morphisms between two vector spaces over the same field) and Corollary 2. Bring
questions if you have any.

Comments on the homework

• Ah yes, Problem 1.16. The easiest way to prove the first assertion, for people
familiar with cardinal arithmetic, is to observe that every finite-dimensional (in
fact, every countable-dimensional) vector space over Q is countable, whereas R is
uncountable (Cantor’s “diagonal” argument). Cardinal arithmetic, however, has
essentially nothing to do with the subject matter of this course (except possibly
to prove, later, the existence of transcendental numbers). Therefore, what Garling
probably had in mind, particularly in view of the second sentence (a question),
is to find an explicit infinite set {r1, r2, r3, . . . } of real numbers that is linearly
independent over Q. Remember that this means that every finite subset of {ri}∞i=1

is linearly independent, equivalently, the set {r1, r2, . . . , rn} is linearly independent
for each n ≥ 1. Soon (see next page) we shall water down the problem, but for now
we shall indicate two such lists that can be shown to be linearly independent (but
to do so with what we have covered so far would be quite hard, or at least very
messy.

• The first list: For each n ≥ 1, let pn denote the nth prime number, and put
un =

√
pn. (Thus the list is

√
2,
√

3,
√

5,
√

7, . . . .)
Fact 1: The field Q(u1,u2, . . . ,un) (that is, the smallest subfield of R that

contains {u1, . . . ,un}) has dimension 2n as a vector space over Q. (The only way we
know to prove this (at least without getting overwhelmed with messy computations)
is to use some Galois Theory.)

• The second list: For each n ≥ 1, let wn = 2(2
−n), the 2nth root of 2. (Thus the

list is {
√

2, 4
√

2, 8
√

2, . . . }.)
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Fact 2: The field Q(wn) has dimension 2n as a vector space over Q. (Soon
you’ll be able to give a very simple proof of this fact. The key ingredients are
Eisenstein’s Criterion (Theorem 5.2), which, with luck, we should get to next week)
and Theorem 4.4, which will probably be done during Week 3.)

• Problem 1.16, watered down. This is the revised problem that we ask you to
do. First of all, if you can find an infinite list and prove it is linearly indepent, go
ahead. That will be more than enough. Otherwise, do the following:

(1) Assuming Fact 1, prove that {u1,u2, . . . ,un, . . . } is linearly independent
over Q.

(2) Assuming Fact 2, prove that {w1,w2, . . . ,wn, . . . } is linearly independent
over Q.

(3) Prove (directly, without using Fact 1) that {
√

2,
√

3,
√

5} is linearly inde-
pendent over Q. You may use without proof the fact that if n is a positive
integer that is not the square of any other positive integer, then

√
n is not

a rational number.


