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• 3.4. This problem is an easy consequence of Theorem 3.14, but, pehaps as an
illustration of the power of that theorem, we will just grind it out first. We may
harmlessly assume that n ≥ m. Then, since an ∈ (am), it will suffice to show
that (an, bn) = R; for then we will have R ⊆ (an, bn) ⊆ (am, bn) ⊆ R and hence
(am, bn) = R, as desired.

Let us assume, inductively, that (an, bn) = R for some positive integer n and
prove that (an+1, bn+1) = R. (The base case n = 1 is the orignial hypothesis.) We
have, by assumption, 1 = ran + sbn for suitable elements r, s ∈ R. Multiplying
both sides by ab, we get ab = rban+1 + sabn+1, and hence

ab ∈ (an+1, bn+1) .

Also, from the base case we have 1 = ua+vb for suitable elements u, v ∈ R. Raising
both sides to the n+ 1st power, and using the binomial theorem, we get

1 = un+1an+1 +M + vn+1bn+1 ,

where M is the sum of the other n terms in the binomial expansion. Each of the
terms in M has ab as a factor, and we have already shown that ab ∈ (an+1, bn+1),
so we see that 1 ∈ (an+1, bn+1). It follows that (an+1, bn+1) = R. �

Here’s a quick proof using Theorem 3.14: If (an, bn) 6= R, there is a maximal
proper ideal m containing (an, bn). Then R/m is a field, and the cosets an +m and
bn +m are zero. Therefore a+m = 0 = b+m, that is, (a, b) ⊂ m, contradiction. �

• 3.7. Let I = (2, x). Then Z[x]
I
∼= Z/(2), which is a field. We claim that In

needs exactly n + 1 generators, for n ≥ 0. (Note I0 = Z[x], which does indeed
need exactly one generator.) It is easy to see that n + 1 generators suffice: In =
(2n, 2n−1x, . . . , 2xn−1, xn). The easiest way to see that there is no generating set
with fewer than n + 1 elements is to show, in fact, that the homomorphic image
In/In+1 actually needs n + 1 generators. This quotient is a vector space over the
two-element field R/I, and it is not hard to see that the images of the generators
above form a basis. Yeah, we’re kind of using some more advanced stuff here, and
not putting in details, so let’s just say that this is one of the three problems that
we are omitting. �

• 3.9. First we claim that if r is a non-zero element of R, then r2 6= 0. To see
this, suppose r2 = 0. Let f : R � (r) be the surjective homomorphism (of abelian
groups) defined by f(t) = tr. then r is in the kernel of f , so there is an induced
surjection f : R/(r) � (r). Since R/(r) is, by assumption, finite, so is (r). Now R
(as an abelian group) is the union of the finitely many cosets of (r), each of which
is finite, and thus R itself is finite, a contradiction to the hypotheses. This proves
the claim.

Now let a and b be non-zero elements of R, and suppose that ab = 0. There is a
ring homomorphism g : R→ R

(a) ×
R
(b) taking r to the ordered pair

(
r+(a), r+(b)

)
.

If r is in the kernel of this map, then r ∈ (a)∩ (b) and hence r2 = 0. Therefore, by
what we showed in the previous paragraph, r = 0. Thus g is injective, and this is
absurd, since R is infinite but R

(a) ×
R
(b) is finite. �
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• 3.10. When R is a domain, we have deg(fg) = deg(f) + deg(g) for non-zero
elements f, g ∈ R[x]. Therefore, in order that fg = 1 both f and g have to be
constants (degree 0). Moreover, they must be units of R. Thus the units of R[x]
are exactly the units of R.

Now let R = Z/(4), and let f = a0 + ax + · · · + amx
m. We claim that f is a

unit of R[x] if and only if a0 = ±1 and ai ∈ {0, 2} for 1 ≤ i ≤ m. For the “if”
direction, we can write such an f in the form f = ±1 + 2g; simply note that then
f2 = 1, so f is a unit. For the other direction, suppose f is a unit with inverse
g = b0 + b1x+ . . . bnx

n. Then a0b0 = 1, so a0 = b0 = ±1. Assume ai /∈ {0, 2} (that
is, ai = ±1) for some i ≥ 1, and let r be the first such integer i. The coefficient of
xr in the product fg is then aib0 + 2c for some c ∈ R. Therefore this coefficient is
not zero, and we have a contradiction. �

• 3.11. Finally, an easy problem! However, we have to assume that the element a
is non-zero, else the “if” direction fails, since prime elements are rrequired to be
non-zero. Suppose a is prime, and let r, s ∈ R/(a) with rs = 0. Write r = x+ (a)
and s = y + (a) with x, y ∈ R. Then xy + (a) = rs = 0, so xy ∈ (a). This means
a | xy. Since a is prime, either a | x or a | y, that is, either x ∈ (a) (in which case
r = 0) or y ∈ (a) (in which case s = 0.

Conversely, assume a 6= 0 and R/(a) is a domain. If a | xy, with x, y ∈ R, then
xy ∈ (a). Therefore (x + (a))(y + (a) = xy + (a) = 0 in R/(a). Since R/(a) is
domain, either x+ (a) = 0 or y+ (a) = 0. this means either x ∈ (a) (in which case
a | x) or x ∈ (b) (in which case a | y. �

• 3.12. First we notice that if α ∈ Z + i
√

5Z then φ(α) = αα, where α is the
complex conjugate. By multiplicativity of complex conjugation (or by a boring

direct calculation) we have φ(αβ) = (φ(α))(φ(β)) for α, β ∈ Z + i
√

5Z.

(a) If α = m + i
√

5n and αβ = 1, then (φ(α))(φ(β)) = φ(αβ) = φ(1) = 1.
Since φ(α) and φ(β) are non-negative integers, it follows that φ(α) = 1, and hence
m = ±1 and n = 0. �

(b) If m + i
√

5n /∈ {0, 1,−1}, then either |m| ≥ 2 (in which case m2 ≥ 4) or

|n| ≥ 1 (in which case 5n2 ≥ 5). In both cases we have φ(m + i
√

5n) ≥ 4 > 3.

Now let α = 2± i
√

5, and suppose α = βγ, with β, γ ∈ Z + i
√

5Z, neither of them
a unit and, of course, neither of them zero. Then β, γ /∈ {0,±1}, and we have
9 = φ(α) = φ(βγ) = (φ(β)) · (φ(γ)) > 3 · 3 = 9, contradiction. �

(c) (2+i
√

5)(2−i
√

5) = 6 = 2·3, so 2+
√

5 | 2·3. If 2+i
√

5 | 2, write (2+i
√

5)β =
2, getting 9φ(β) = φ(2) = 4, which is absurd, since φ(β) is a non-negative integer.

If (2 + i
√

5)β = 3, we get 9φ(β) = φ(3) = 9, forcing φ(β) = 1, whence β = ±1,

another absurdity. Thus 2 + i
√

5 divides neither 2 nor 3 and therefore is not prime.
The ring Z = i

√
5Z is not a UFD because it has an irreducible element that is not

prime. �

• 3.14. We choose to omit this one, because it is too easy.

• 3.16. A basic fact that we should formalize now is the “Correspondence Theorem”,
which says

Let I be an ideal in a ring R. The ideals of the ring R/I are exactly the sets

J/I, where J is an ideal of R that contains I. Moreover, we have R/I
J/I
∼= R/J as

rings. �
The Correspondence Theorem is sort of used in the proof of Theorem 3.16.
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Back to the problem. The ideals of Z/(6) correspond to the ideals J of Z such that
(6) ⊆ J , that is, the ideals (a) of Z such that a | 6. Therefore the ideals of Z/(6) are
(1)/(6), (2)/(6), (3)/(6), and(6)/(6), or (using overlines for cosets) (1), (2), (3), (0).
The ring is a principal ideal ring but not a principal ideal domain since 2 ·3 = 0. �

• 3.17. Closure under ±: r
s ±

u
v = rv±su

sv . Closure under mulitplication: r
s ·

u
v = ru

sv .

(Note p - sv because p is prime. Identity: 1 = 1
1 and p - 1. �An element

r
s (with p - s is a unit if and only if p - r. To see this, suppose p | r and r

s ·
u
v = 1,

then ru = sv, so p | sv, contradiction. Conversely, suppose r
s ∈ R with p - s and

p - r. Then s
r ∈ R, and r

s ·
s
r = 1, so r

s is a unit. �
Let I be an ideal of R, and check easily that K ∩ Z is an ideal of Z. We can

write I ∩Z = Zx for some integer x (since Z is a PID). We will show that I = Rx.
“⊇” is clear, since x ∈ I. For the reverse inclusion, let y ∈ I and write y = r

s ,
where r, s ∈ Z and p - s. Then r = sy ∈ I ∩ Z, so r = cx for some integer c. Then
sy = cx, so y = c

sx ∈ Rx. �

• 3.18. Since R is a domain but not a field, there is a non-zero non-unit c ∈ R. Let
I = (c, x) in R[x], and suppose I is a principal ideal, say, I = (a), where a ∈ R[x].
Then c = ab for some b ∈ R[x], and this means a must have degree 0, that is,
0 6= a ∈ R[x]. Also, we have x ∈ aR[x], say x = a(a0 + a1x+ . . . anx

n). From this
we get ai = 0 for i 6= 1 and aa1 = 1. Therefore a is a unit of R. Since (c, x) = aR[x],
there are polynomials f, g ∈ R[x] such that a = cf + xg. Setting x = 0, we get
a = cf(0), which, since a is a unit, impies that c is a unit, contradiction. �

• 3.19. Since “least common multiple” is not defined in the book, we shall do so
here. Given non-zero elements a1, . . . , ak in a domain R, an element m ∈ R is a
least common multiple (LCM) of a1, . . . , ak, provided (i) ai | m for each i, and (ii)
if n ∈ R and ai | n for each i, then m | n. Out of habits cultivated over many
decades, we shall use the term greatest common divisor (GCD) for Garling’s highest
common factor. It is easy to check that if d is a GCD of a set {ai} and d′ is any
element of R, then d′ is a GCD of {ai} if and only if d′ is an associate of d. Note
that for a single non-zero element a ∈ R, a is a GCD of {a} and an LCM of {a}.
Therefore we’ll deal only with sets with more than one element. First we prove: If
every two non-zero elements have a GCD, then every finite set {a1, . . . , an}, n ≥ 2,
of non-zero elements has a GCD. No problem if n = 2, so assume n ≥ 3 and that
{a1, . . . , an−1} has a GCD d. Let e be a GCD of d and an. Then e | d, so e | ai for
each i ≤ n− 1, and of course e | an. Suppose f is a common divisor of a1, . . . , an;
we want to show that f | e. Since f | ai for 1 ≤ i ≤ n − 1, f must divide d. Also,
f | an, so f | e.

Similarly, if every two elements of R have an LCM, then every finite set of two
or more elements has an LCM. The problem now simplifies to: Every two elements
have a GCD if and only if every two elements have an LCM. Alas, we don’t know
how to prove this. We can prove the “if” direction, and we can prove the “only
if” direction if we assume that R satisfies ACCPI. It’s conceivable that existence of
LCMs implies ACCPI, in which case the problem would be solved, but this seems
unlikely.

“ if”: Assume that m is an LCM of a and b. Since ab is a common multiple of
a and b, m must divide ab, say, md = ab. We shall show that d is a GCD of a and
b. Since b | m we can write br = m. Then dbr = dm = ab, and hence dr = a. This
shows that d | a, and a symmetric argument, starting with a | m, shows that d | b.
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Next, let e ∈ R be a common divisor of a and b, say, eu = a and v = b. We want
to show that e | d. VOMITYPUS

“only if”, assuming ACCPI: Let a and b be non-zero elements of R. We want
to find an LCM. Let S = {(x) | a | x and b | x}. Note that (ab) ∈ S, so S is a
non-empty set of principal ideals. By ACCPI, S has a maximal element m. This
means that m is a common multiple of a and b but no proper divisor of m is a
common multiple of a and b. (To say that m′ is a proper divisor of m means that
(m′) ) (m).) We claim that m is an LCM of a and b. To see this, suppose n is a
common multiple of a and b. We have to show that m | n. Let d be a GCD of m
and n. (We are assuming that every pair of non-zero elements has a GCD.) Since
a | m and a | n, a is a common divisor of m and n, and hence a | d. By symmetry,
b | d. Thus d is a common multiple of a and b, and so (d) ∈ S. Since d | m, we
have (d) ⊃ (m) and therefore (d) = (m), as (m) is maximal in S. Thus d = mw,
where w is a unit of R. Since d | n, we can write n = yd for some y ∈ R. But then
n = ymw, and hence m | n. �

• 3.24. Let J be a proper ideal of the countable ring R. Let R\J = {x1, x2, x3, . . . }.
If J +Rxi = R for every i ≥ 1, then J is a maximal proper ideal, and we are done.
Otherwise, let i1 be the least index for which J +Rxi1 6= R. Repeat: If J +Rxi1 is
not a maximal ideal there must be some j 6= i such that J+Rxi1 +Rxj 6= R. Let i2
be the least such index, and note that i2 > i1. Continue. There are two possibilities.
(1) At some finite stage J +Rxi1 + · · ·+Rxin is a maximal ideal, and we are done.
(2) The process goes on forever. In that case m := J + Rxi1 + Rxi2 + Rxi3 + . . .
is a nested union of proper ideals of R. Then m is a proper ideal since it does not
contain 1. Also, it is not contained in any larger proper ideal, since there is no
index greater than every ij .

• 3.25. If u is invertible (that is, u is a unit), Then Ru = R, so R is not contained
in any proper ideal. Conversely, if u is not invertible then Ru is a proper ideal and
hence, by Theorem 3.14, is contained in a maximal proper ideal.

• 3.26. We won’t prove that J [x] is an ideal (too boring). An element f(x) =
a0 +a1x+ · · ·+amx

m in R[x] belongs to J [x] if and only ai ∈ J for each i. Suppose
now that g(x) = b0 + b1x+ · · ·+ bnx

n ∈ R[x], and that neither f(x) nor g(x) is in
J [x]. Then each of these polynomials has a coefficient that’s not in J . Let i be the
least index for which ai /∈ J and j the least index for which bj /∈ J . The coefficient
of xi+j in f(x)g(x) is then∑

`<i

a`bi+j−` + aibj +
∑
`>i

a`bi+j−` .

The middle term aibj is not in J . In the first sum, each a` is in J , so the first
sum is in J . In the last sum, each subscript i+ j − ` is less than j, so bi+j−` ∈ J .
Therefore the last sum is in J . By the 3/4 Lemma (or something like that) the
coefficient of xi+j in f(x)g(x) is outside J , and we have f(x)g(x) /∈ J .

[The elegant way to do this is to observe that R[x]/J [x] ∼= (R/J)[x], which we
know is an integral domain (since R/J is an integral domain). Therefore J [x] is
a prime ideal of R[x]. (We are using the easy observation that, in any ring A, an
ideal I is prime if and only if A/I is an integral domain.)]

To show that J [x] is not a maximal proper ideal, we’ll use the elegant approach
first. If J [x] were a maximal proper ideal of R[x], then R[x]/J [x] would be a field,
and hence the isomorphic ring (R/J)[x] would be a field. But in the polynomial
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ring (R/J)[x] the only units are constants that are units of R/J . In particular, the
non-zero polynonial x is not a unit, so (R/J)[x] is not a field.

Taking a cue from the elegant approach, we can build a direct, computational
argument by noting that x /∈ J [x], so that J [x] + xR[x] is an ideal properly con-
taining J [x]. Moreover, it’s a proper ideal since it does not contain 1. Indeed, if
1 = f(x) + xg(x), where f(x) ∈ J [x], we could set x = 0, getting 1 = a0, the
constant term of f(x). But a0 ∈ J , and this means that 1 ∈ J , contradicting the
assumption that J is a prime ideal, and hence a proper ideal.


