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ROGER & SYLVIA WIEGAND

• 1.1. Let a be an element of a group G. By definition, there is an element b ∈ G
such that ab = ba = e. Suppose c also satisfies ac = ca = e. Then

c = ce = c(ab) = (ca)b = eb = b.

(There are many ways to prove this, but this is kind of slick and uses only that c
is a left inverse and b is a right inverse.)

• 1.3. Let x ∈ G. If x ∈ H, then xH = H. If x /∈ H, then, since G is the disjoint
union of its left cosets, and since there are only two of them, xH must be G \H.
Similarly, Hx = H if x ∈ H, and Hx = G \H if x /∈ H. Thus xH = Hx for every
x ∈ G, that is, H C G.

• 1.4. Let x ∈ G. Then xHx−1 ≤ G. Also, we claim that the function f : H →
xHx−1 defined by f(h) = xhx−1 is both one-to-one and onto. Obviously it’s onto.
To see that it’s one-to one, suppose f(h) = f(h′). Then xhx−1 = xh′x−1. Multiply
both sides on the left by x−1 and on the right by x to get h = h′. This shows that
|xHx−1| = |H| = k. Therefore, by the hypothesis, xHx−1 = H. Since x is an
arbitrary element of G, this shows that H C G.

[• Although 1.5 was not assigned, it’s important and it probably should have

been assigned; so we’ll give an example here (which we hope you have already
found on your own). The Klein 4-group V := {(1), (12)(34), (13)(24), (14)(23)}
is normal in S4. (Recall the effect of conjugation on a cycle, or on a product
of disjoint cycles; normality follows immediately.) Also, H := {(1), (12)(34)} is
normal in V , since it has index 2. But H is not a normal subgroup of S4, since
(13)

(
(12)(34)

)
(13)−1 = (32)(14) = (14)(23), which is not in H.]

• 1.6. Since every permutation can be written as a product of cycles (in fact,
disjoint cycles), it’s enough to show that every cycle is a product of transpositions.
Here goes: (a1 a2 . . . ak) = (a1 ak)(a1 ak−1) . . . (a1 a3)(a1 a2). (What a nuisance,
having to start on the right!)

• 1.12. To show well-definedness, suppose a+ nZ = a′ + nZ and b+ nZ = b′ + nZ.
We have to show that ab+ nZ = a′b′ + nZ. We have a− a′ ∈ nZ and b− b′ ∈ nZ;
therefore (ab−a′b′) = a(b−b′)+(a−a′)b′, which is in nZ (by the “sponge property
and closure under addition). Therefore ab−a′b′ ∈ nZ, that is, ab+nZ = a′b′+nZ.

If n = 1 then Zn has only one element, so it’s not a field. Assume n ≥ 2. If n
is not a prime, let n = ab, where 1 < a ≤ b < n. If Zn were a field, the non-zero
element a + Z would have to have an inverse, say, ac ≡ 1 (where “≡” denotes “≡
(mod n)”). But ab ≡ 0, and hence b ≡ bac ≡ 0c ≡ 0, which is false, since 1 < b < n.
Thus Zn is not a field.

Finally we show Zp is a field if p is a prime. The associative and distributive
laws all follow from those in Z, so we just have to show that every non-zero element
a+ pZ has an inverse. We may assume that 0 < a < p. Then a and p are relatively
prime. By the Euclidean algorithm, their greatest common divisor, namely 1, can
be expressed in the form ax + py. Then 1 = ax + py, and hence ax ≡ 1. Thus
(a+ pZ)(x+ pZ) = 1, and we have found the inverse of a+ pZ. Hurray!
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• 1.13. They are all closed under addition and subtraction, so we just have to check
closure under multiplication, and existence of inverses.

(i) is a subfield. (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i, and (a+ bi) a−bi
a2+b2 = 1,

as long as a and b are not both equal to 0.
(ii) One checks directly that ω2 = −(ω + 1). Therefore (a + bω)(c + dω) =

ac− bd(ω + 1) + (ad+ bc)ω = (ac− bd) + (ad+ bc− bd)ω. For inverses, if a and b
are not both 0, we want to find c, d so that (a + bω)(c + dω) = 1. It makes sense

to use the conjugate ω = 1
2 (−1 −

√
3i), which satisfies ωω = 1 and ω + ω = −1.

Therefore (a + bω)(a + bω) = a2 − ab + b2. Then, as long as a2 − ab + b2 6= 0, we
have (a+ bω)−1 = a+bω

a2−ab+b2 . We just have to show that a2 − ab+ b2 6= 0 unless a
and b are both 0. If a = 0 and b 6= 0, this is trivial, so assume that a 6= 0. If, now,
a2 − ab+ b2 = 0, we have 1− b

a + ( b
a )2, which is impossible since 1− x+ x2 has no

rational roots.
(iii) Put β = 2

1
3 . The subset of C we are to analyze is V := {a+ bβ | a, b ∈ Q}.

This is not a subfield of C because it is not closed under multiplication. In fact,
β2 /∈ V . To see this, suppose that we have

eq:belcheq:belch (0.1) β2 = a+ bβ with a, b ∈ Q .

Let g(x) = x3 − 2 and f(x) = x2 − bx − a ∈ Q[x]. Notice that g(β) = 0 and
f(β) = 0. Using long division (dividing by g(x) by f(x)), we get

g(x) = f(x)q(x) + r(x), where q(x) = x+ b and r(x) = (a+ b2)x+ (ab− 2) .

Setting x = β, we see that r(β) = 0, that is,

eq:snorteq:snort (0.2) (a+ b2)β + (ab− 2) = 0 .

If a + b2 = 0, then ab − 2 = 0 too, and it would follow that a and b are both
negative, which would contradict Equation (0.1). Therefore a+ b2 6= 0, and we can
divide by a+ b2 in Equation (0.2) and get β ∈ Q. But this is false, and we’re done
(except for showing that β is irrational). The proof that β is irrational is just like

the proof that
√

2 is irrational: Write β = r
s , where r and s are relatively prime

positive integers. Then 2 = r3

s3 , so 2s3 = r3. Therefore r is even, say r = 2t. Now

we get 2s3 = 8t3, so s3 = 4t3. Therefore s is even too, a contradiction.
By next week, after a little theory has been developed, you’ll be able to do

problems like this very easily!
(iv) This one is a subfield. Closure under multiplication is easy. A direct proof

of the existence of inverses is a mess, so we will use a little bit of cleverness. Note
that the set (call it R) is a three-dimensional vector space over Q. If γ is a non-zero
element of R, consider the linear transformation f : R→ R given by multiplication
by γ: f(x) = γx for every x ∈ R. Since R is a subring of C (in fact, of R) we see
that Ker f = 0. Thus f is an injective linear transformation of a finite-dimensional
vector space and hence is surjective. Thus there is some element δ ∈ R such that
f(δ) = 1, that is, γδ = 1. Amazing! We have shown tht γ has an inverse.

• 1.16. We will dutifully follow the directives given in the notes from Class 3.
(1) Since 2n+1 > 2n for every n ≥ 0, it follows from Fact 1 that un+1 is not in

the subfield generated by {u1, . . . ,un} and a fortiori not in the Q-linear subspace
spanned by {u1, . . . ,un}. Thus u1 /∈ Q and, for each n ≥ 1, un+1 is not a linear
combination of u1, . . . ,un. Using this observation, we show that every finite subset
F of the infinite set {u1,u2,u3, . . . } is linearly independent over Q. Choose n
big enough so that F is contained in {u1, . . . ,un}. It will suffice to show that
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{u1, . . . ,un} is linearly independent, since any subset of a linearly independent set
is linearly independent. Suppose ci ∈ Q and c1u1 + · · · + cnun = 0 with not all
ci = 0. Let cm be the last non-zero coefficient, that is, cm 6= 0 but ci = 0 for
m < i ≤ n. By dividing by cm, we can express um as a linear combination of
u1, . . . ,um−1, contradicting the observation we made above. This proves linear
independence.

(2) The proof is exactly the same as for (1), except for substitution of “w” for
“u” everywhere.

(3) Suppose a
√

2 + b
√

3 + c
√

5 = 0, with a, b, c ∈ Q. We have to show that
a = b = c = 0. Writing this equation three ways, and then squaring both sides, we
obtain the following equations:

−a
√

2 = b
√

3 + c
√

5 =⇒ 2a2 = 3b2 + 2bc
√

15 + 5c2

−b
√

3 = a
√

2 + c
√

5 =⇒ 3b2 = 2a2 + 2ac
√

10 + 5c2

−c
√

5 = a
√

2 + b
√

3 =⇒ 5c2 = 2a2 + 2ab
√

6 + 3b2

Examining the equations on the right, we see that bc 6= 0 =⇒
√

15 ∈ Q, ac 6=
0 =⇒

√
10 ∈ Q, and ab = 0 =⇒

√
6 ∈ Q. Therefore we must have bc = ac =

ab = 0. Hence, if a 6= 0 we’d have b = c = 0, which would imply that a
√

2 = 0,
a contradiction. Similarly, b 6= 0 would imply b

√
3 = 0, and c 6= 0 would imply

c
√

5 = 0, both of which are contradictions. Thus a = b = c = 0.

• 1.17 (as modified in the notes on Class #1)
(a) Suppose V = U1 ∪ · · · ∪ Un, where the Ui are proper subspaces of the 2-

dimensional vector space V over the infinite field K. We can toss out any of the Ui

that happen to be {0}, so we assume that each Ui has dimension one. Let {v,w} be
a basis of V . Choose n+ 1 distinct elements c1, . . . cn+1 ∈ K, and choose, for each
i = 1, . . . , n+1, one of the given one-dimensional subspaces that contains the vector
v+ciw. Since n+1 > n, two of these elements must lie in the same one-dimensional
subspace. This means that v + ciw and v + cjw are in a one-dimensional subspace
Ui. Then

v + ciw − (v + cjw) ∈ Ui =⇒ (ci − cj)w ∈ Ui =⇒ w ∈ Ui and v ∈ Ui,

since we had v + ciw ∈ Ui. This contradicts dimUi = 1.
(b) Let K = {0, 1}, the two-element field. Let V be a two-dimensional vec-

tor space over K with a basis {v,w}. Then V has just four elements, namely,
0,v,w,v + w. Now notice that V is the union of the three one-dimensional sub-
spaces {0,v}, {0,w}, and {0,v + w}.


