NAP 2019, HOMEWORK SET #1, MAY 113, 2019

ROGER & SYLVIA WIEGAND

• 1.1. Let a be an element of a group G. By definition, there is an element $b \in G$ such that ab = ba = e. Suppose c also satisfies ac = ca = e. Then

$$c = ce = c(ab) = (ca)b = eb = b.$$

(There are many ways to prove this, but this is kind of slick and uses only that c is a left inverse and b is a right inverse.)

• 1.3. Let $x \in G$. If $x \in H$, then xH = H. If $x \notin H$, then, since G is the disjoint union of its left cosets, and since there are only two of them, xH must be $G \setminus H$. Similarly, Hx = H if $x \in H$, and $Hx = G \setminus H$ if $x \notin H$. Thus xH = Hx for every $x \in G$, that is, $H \triangleleft G$.

• 1.4. Let $x \in G$. Then $xHx^{-1} \leq G$. Also, we claim that the function $f: H \to xHx^{-1}$ defined by $f(h) = xhx^{-1}$ is both one-to-one and onto. Obviously it's onto. To see that it's one-to one, suppose f(h) = f(h'). Then $xhx^{-1} = xh'x^{-1}$. Multiply both sides on the left by x^{-1} and on the right by x to get h = h'. This shows that $|xHx^{-1}| = |H| = k$. Therefore, by the hypothesis, $xHx^{-1} = H$. Since x is an arbitrary element of G, this shows that $H \lhd G$.

[• Although 1.5 was not assigned, it's important and it probably should have been assigned; so we'll give an example here (which we hope you have already found on your own). The Klein 4-group $V := \{(1), (12)(34), (13)(24), (14)(23)\}$ is normal in S_4 . (Recall the effect of conjugation on a cycle, or on a product of disjoint cycles; normality follows immediately.) Also, $H := \{(1), (12)(34)\}$ is normal in V, since it has index 2. But H is not a normal subgroup of S_4 , since $(13)((12)(34))(13)^{-1} = (32)(14) = (14)(23)$, which is not in H.]

• 1.6. Since every permutation can be written as a product of cycles (in fact, disjoint cycles), it's enough to show that every cycle is a product of transpositions. Here goes: $(a_1 \ a_2 \ \dots a_k) = (a_1 \ a_k)(a_1 \ a_{k-1}) \dots (a_1 \ a_3)(a_1 \ a_2)$. (What a nuisance, having to start on the right!)

• 1.12. To show well-definedness, suppose $a + n\mathbb{Z} = a' + n\mathbb{Z}$ and $b + n\mathbb{Z} = b' + n\mathbb{Z}$. We have to show that $ab + n\mathbb{Z} = a'b' + n\mathbb{Z}$. We have $a - a' \in n\mathbb{Z}$ and $b - b' \in n\mathbb{Z}$; therefore (ab - a'b') = a(b - b') + (a - a')b', which is in $n\mathbb{Z}$ (by the "sponge property and closure under addition). Therefore $ab - a'b' \in n\mathbb{Z}$, that is, $ab + n\mathbb{Z} = a'b' + n\mathbb{Z}$.

If n = 1 then \mathbb{Z}_n has only one element, so it's not a field. Assume $n \ge 2$. If n is not a prime, let n = ab, where $1 < a \le b < n$. If \mathbb{Z}_n were a field, the non-zero element $a + \mathbb{Z}$ would have to have an inverse, say, $ac \equiv 1$ (where " \equiv " denotes " $\equiv (\mod n)$ "). But $ab \equiv 0$, and hence $b \equiv bac \equiv 0c \equiv 0$, which is false, since 1 < b < n. Thus \mathbb{Z}_n is not a field.

Finally we show \mathbb{Z}_p is a field if p is a prime. The associative and distributive laws all follow from those in \mathbb{Z} , so we just have to show that every non-zero element $a + p\mathbb{Z}$ has an inverse. We may assume that 0 < a < p. Then a and p are relatively prime. By the Euclidean algorithm, their greatest common divisor, namely 1, can be expressed in the form ax + py. Then 1 = ax + py, and hence $ax \equiv 1$. Thus $(a + p\mathbb{Z})(x + p\mathbb{Z}) = 1$, and we have found the inverse of $a + p\mathbb{Z}$. Hurray! • 1.13. They are all closed under addition and subtraction, so we just have to check closure under multiplication, and existence of inverses.

(i) is a subfield. (a+bi)(c+di) = (ac-bd) + (ad+bc)i, and $(a+bi)\frac{a-bi}{a^2+b^2} = 1$, as long as a and b are not both equal to 0.

(ii) One checks directly that $\omega^2 = -(\omega + 1)$. Therefore $(a + b\omega)(c + d\omega) = ac - bd(\omega + 1) + (ad + bc)\omega = (ac - bd) + (ad + bc - bd)\omega$. For inverses, if a and b are not both 0, we want to find c, d so that $(a + b\omega)(c + d\omega) = 1$. It makes sense to use the conjugate $\overline{\omega} = \frac{1}{2}(-1 - \sqrt{3}i)$, which satisfies $\omega\overline{\omega} = 1$ and $\omega + \overline{\omega} = -1$. Therefore $(a + b\omega)(a + b\overline{\omega}) = a^2 - ab + b^2$. Then, as long as $a^2 - ab + b^2 \neq 0$, we have $(a + b\omega)^{-1} = \frac{a + b\overline{\omega}}{a^2 - ab + b^2}$. We just have to show that $a^2 - ab + b^2 \neq 0$ unless a and b are both 0. If a = 0 and $b \neq 0$, this is trivial, so assume that $a \neq 0$. If, now, $a^2 - ab + b^2 = 0$, we have $1 - \frac{b}{a} + (\frac{b}{a})^2$, which is impossible since $1 - x + x^2$ has no rational roots.

(iii) Put $\beta = 2^{\frac{1}{3}}$. The subset of \mathbb{C} we are to analyze is $V := \{a + b\beta \mid a, b \in \mathbb{Q}\}$. This is *not* a subfield of \mathbb{C} because it is not closed under multiplication. In fact, $\beta^2 \notin V$. To see this, suppose that we have

eq:belch
$$(0.1)$$
 $\beta^2 = a + b\beta$ with $a, b \in$

Let $g(x) = x^3 - 2$ and $f(x) = x^2 - bx - a \in \mathbb{Q}[x]$. Notice that $g(\beta) = 0$ and $f(\beta) = 0$. Using long division (dividing by g(x) by f(x)), we get

Q.

g(x) = f(x)q(x) + r(x), where q(x) = x + b and $r(x) = (a + b^2)x + (ab - 2)$. Setting $x = \beta$, we see that $r(\beta) = 0$, that is,

eq:snort

(0.2)

$$(a+b^2)\beta + (ab-2) = 0$$
.

If $a + b^2 = 0$, then ab - 2 = 0 too, and it would follow that a and b are both negative, which would contradict Equation (0.1). Therefore $a + b^2 \neq 0$, and we can divide by $a + b^2$ in Equation (0.2) and get $\beta \in \mathbb{Q}$. But this is false, and we're done (except for showing that β is irrational). The proof that β is irrational is just like the proof that $\sqrt{2}$ is irrational: Write $\beta = \frac{r}{s}$, where r and s are relatively prime positive integers. Then $2 = \frac{r^3}{s^3}$, so $2s^3 = r^3$. Therefore r is even, say r = 2t. Now we get $2s^3 = 8t^3$, so $s^3 = 4t^3$. Therefore s is even too, a contradiction.

By next week, after a little theory has been developed, you'll be able to do problems like this very easily!

(iv) This one is a subfield. Closure under multiplication is easy. A direct proof of the existence of inverses is a mess, so we will use a little bit of cleverness. Note that the set (call it R) is a three-dimensional vector space over \mathbb{Q} . If γ is a non-zero element of R, consider the linear transformation $f: R \to R$ given by multiplication by γ : $f(x) = \gamma x$ for every $x \in R$. Since R is a subring of \mathbb{C} (in fact, of \mathbb{R}) we see that Ker f = 0. Thus f is an injective linear transformation of a finite-dimensional vector space and hence is surjective. Thus there is some element $\delta \in R$ such that $f(\delta) = 1$, that is, $\gamma \delta = 1$. Amazing! We have shown tht γ has an inverse.

• 1.16. We will dutifully follow the directives given in the notes from Class 3.

(1) Since $2^{n+1} > 2^n$ for every $n \ge 0$, it follows from **Fact 1** that u_{n+1} is not in the subfield generated by $\{u_1, \ldots, u_n\}$ and a fortiori not in the Q-linear subspace spanned by $\{u_1, \ldots, u_n\}$. Thus $u_1 \notin \mathbb{Q}$ and, for each $n \ge 1$, u_{n+1} is not a linear combination of u_1, \ldots, u_n . Using this observation, we show that every finite subset F of the infinite set $\{u_1, u_2, u_3, \ldots\}$ is linearly independent over Q. Choose n big enough so that F is contained in $\{u_1, \ldots, u_n\}$. It will suffice to show that

 $\{u_1,\ldots,u_n\}$ is linearly independent, since any subset of a linearly independent set is linearly independent. Suppose $c_i \in \mathbb{Q}$ and $c_1u_1 + \cdots + c_nu_n = 0$ with not all $c_i = 0$. Let c_m be the last non-zero coefficient, that is, $c_m \neq 0$ but $c_i = 0$ for $m < i \leq n$. By dividing by c_m , we can express u_m as a linear combination of u_1,\ldots,u_{m-1} , contradicting the observation we made above. This proves linear independence.

(2) The proof is *exactly* the same as for (1), except for substitution of " \boldsymbol{w} " for " \boldsymbol{u} " everywhere.

(3) Suppose $a\sqrt{2} + b\sqrt{3} + c\sqrt{5} = 0$, with $a, b, c \in \mathbb{Q}$. We have to show that a = b = c = 0. Writing this equation three ways, and then squaring both sides, we obtain the following equations:

$$-a\sqrt{2} = b\sqrt{3} + c\sqrt{5} \implies 2a^2 = 3b^2 + 2bc\sqrt{15} + 5c^2$$

$$-b\sqrt{3} = a\sqrt{2} + c\sqrt{5} \implies 3b^2 = 2a^2 + 2ac\sqrt{10} + 5c^2$$

$$-c\sqrt{5} = a\sqrt{2} + b\sqrt{3} \implies 5c^2 = 2a^2 + 2ab\sqrt{6} + 3b^2$$

Examining the equations on the right, we see that $bc \neq 0 \implies \sqrt{15} \in \mathbb{Q}$, $ac \neq 0 \implies \sqrt{10} \in \mathbb{Q}$, and $ab = 0 \implies \sqrt{6} \in \mathbb{Q}$. Therefore we must have bc = ac = ab = 0. Hence, if $a \neq 0$ we'd have b = c = 0, which would imply that $a\sqrt{2} = 0$, a contradiction. Similarly, $b \neq 0$ would imply $b\sqrt{3} = 0$, and $c \neq 0$ would imply $c\sqrt{5} = 0$, both of which are contradictions. Thus a = b = c = 0.

• 1.17 (as modified in the notes on Class #1)

(a) Suppose $V = U_1 \cup \cdots \cup U_n$, where the U_i are proper subspaces of the 2dimensional vector space V over the infinite field K. We can toss out any of the U_i that happen to be $\{0\}$, so we assume that each U_i has dimension one. Let $\{v, w\}$ be a basis of V. Choose n + 1 distinct elements $c_1, \ldots c_{n+1} \in K$, and choose, for each $i = 1, \ldots, n+1$, one of the given one-dimensional subspaces that contains the vector $v+c_iw$. Since n+1 > n, two of these elements must lie in the *same* one-dimensional subspace. This means that $v + c_iw$ and $v + c_jw$ are in a one-dimensional subspace U_i . Then

$$\boldsymbol{v} + c_i \boldsymbol{w} - (\boldsymbol{v} + c_j \boldsymbol{w}) \in U_i \implies (c_i - c_j) \boldsymbol{w} \in U_i \implies \boldsymbol{w} \in U_i \text{ and } \boldsymbol{v} \in U_i,$$

since we had $\boldsymbol{v} + c_i \boldsymbol{w} \in U_i$. This contradicts dim $U_i = 1$.

(b) Let $K = \{0, 1\}$, the two-element field. Let V be a two-dimensional vector space over K with a basis $\{v, w\}$. Then V has just four elements, namely, $\mathbf{0}, v, w, v + w$. Now notice that V is the union of the three one-dimensional subspaces $\{\mathbf{0}, v\}$, $\{\mathbf{0}, w\}$, and $\{\mathbf{0}, v + w\}$.