NAP 2019, HOMEWORK SET #1, MAY 113, 2019

ROGER & SYLVIA WIEGAND

e 1.1. Let a be an element of a group G. By definition, there is an element b € G
such that ab = ba = e. Suppose c¢ also satisfies ac = ca = e. Then

¢ = ce = ¢(ab) = (ca)b = eb =b.

(There are many ways to prove this, but this is kind of slick and uses only that ¢
is a left inverse and b is a right inverse.)

e13. Letz € G. lf x € H, then zH = H. If ¢ H, then, since G is the disjoint
union of its left cosets, and since there are only two of them, zH must be G \ H.
Similarly, Hr = H if v € H, and Hx =G\ H if x ¢ H. Thus «H = Hux for every
r € G, that is, H < G.

e 14 Let x € G. Then zHz~! < G. Also, we claim that the function f : H —
xHx~! defined by f(h) = zha~! is both one-to-one and onto. Obviously it’s onto.
To see that it’s one-to one, suppose f(h) = f(h'). Then zhz~! = zh/z~1. Multiply
both sides on the left by 2~! and on the right by = to get h = h’. This shows that
|ltHz~'| = |H| = k. Therefore, by the hypothesis, tHz~! = H. Since x is an
arbitrary element of GG, this shows that H < G.

[e Although 1.5 was not assigned, it’s important and it probably should have

been assigned; so we’ll give an example here (which we hope you have already
found on your own). The Klein 4-group V := {(1),(12)(34), (13)(24), (14)(23)}
is normal in Sy. (Recall the effect of conjugation on a cycle, or on a product
of disjoint cycles; normality follows immediately.) Also, H := {(1),(12)(34)} is
normal in V, since it has index 2. But H is not a normal subgroup of Sy, since
(13)((12)(34))(13)~* = (32)(14) = (14)(23), which is not in H.]
e 1.6. Since every permutation can be written as a product of cycles (in fact,
disjoint cycles), it’s enough to show that every cycle is a product of transpositions.
Here goes: (a1 az ...ax) = (a1 ag)(a1 ax—1) ... (a1 as)(a1 az). (What a nuisance,
having to start on the right!)
e 1.12. To show well-definedness, suppose a +nZ = a’ +nZ and b+ nZ = b’ + nZ.
We have to show that ab +nZ = a’b’ + nZ. We have a —a’ € nZ and b — V' € nZ;
therefore (ab—a'd’) = a(b—b') + (a—a’)b’, which is in nZ (by the “sponge property
and closure under addition). Therefore ab—a'b’ € nZ, that is, ab+nZ = o't/ + nZ.
If n = 1 then Z,, has only one element, so it’s not a field. Assume n > 2. If n
is not a prime, let n = ab, where 1 < a < b < n. If Z,, were a field, the non-zero
element a + Z would have to have an inverse, say, ac = 1 (where “=” denotes “=

(mod n)”). But ab = 0, and hence b = bac = 0c = 0, which is false, since 1 < b < n.
Thus Z,, is not a field.

Finally we show Z, is a field if p is a prime. The associative and distributive
laws all follow from those in Z, so we just have to show that every non-zero element
a+ pZ has an inverse. We may assume that 0 < a < p. Then a and p are relatively
prime. By the Euclidean algorithm, their greatest common divisor, namely 1, can
be expressed in the form ax + py. Then 1 = az + py, and hence axr = 1. Thus
(a + pZ)(x + pZ) = 1, and we have found the inverse of a + pZ. Hurray!
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e 1.13. They are all closed under addition and subtraction, so we just have to check
closure under multiplication, and existence of inverses.

(i) is a subfield. (a + bi)(c+ di) = (ac — bd) + (ad + be)i, and (a + bz’)% =1,
as long as a and b are not both equal to 0.

(ii) One checks directly that w? = —(w + 1). Therefore (a + bw)(c + dw) =
ac—bd(w+1) + (ad + bc)w = (ac — bd) + (ad + be — bd)w. For inverses, if a and b
are not both 0, we want to find ¢,d so that (a + bw)(c + dw) = 1. It makes sense
to use the conjugate @ = 1(—1 — v/3i), which satisfies ww = 1 and w + w = —1.
Therefore (a + bw)(a + bw) = a? — ab + b*>. Then, as long as a? — ab + b* # 0, we
have (a + bw)~! = %. We just have to show that a® — ab+ b # 0 unless a
and b are both 0. If a = 0 and b # 0, this is trivial, so assume that a # 0. If, now,
a? —ab+b* =0, we have 1 — 2 4 (£)2, which is impossible since 1 — z + z? has no
rational roots.

(iii) Put 8 = 2. The subset of C we are to analyze is V := {a + b3 | a,b € Q}.
This is not a subfield of C because it is not closed under multiplication. In fact,
B2 ¢ V. To see this, suppose that we have

(0.1) fZ=a+b3 with a,beQ.

Let g(z) = 2 — 2 and f(x) = 2% — bz — a € Q[z]. Notice that g(8) = 0 and
f(B) = 0. Using long division (dividing by g(z) by f(x)), we get

g(z) = f(x)q(z) +7(z), where ¢(z)=2+b and 7(z)= (a+b*)z+ (ab—2).
Setting x = 3, we see that 7(3) = 0, that is,
(0.2) (a+b*)B+ (ab—2) =0.

If a +b%> =0, then ab — 2 = 0 too, and it would follow that a and b are both
negative, which would contradict Equation . Therefore a + b? # 0, and we can
divide by a + b? in Equation and get B € Q. But this is false, and we're done
(except for showing that g is irrational). The proof that § is irrational is just like

the proof that /2 is irrational: Write 8 = =, where r and s are relatively prime

positive integers. Then 2 = Z—:, so 25 = 13, Therefore r is even, say r = 2t. Now
we get 253 = 8t3, so s3 = 4t3. Therefore s is even too, a contradiction.

By next week, after a little theory has been developed, you’ll be able to do
problems like this very easily!

(iv) This one is a subfield. Closure under multiplication is easy. A direct proof
of the existence of inverses is a mess, so we will use a little bit of cleverness. Note
that the set (call it R) is a three-dimensional vector space over Q. If 7 is a non-zero
element of R, consider the linear transformation f : R — R given by multiplication
by v: f(x) = vz for every x € R. Since R is a subring of C (in fact, of R) we see
that Ker f = 0. Thus f is an injective linear transformation of a finite-dimensional
vector space and hence is surjective. Thus there is some element § € R such that
f(8) =1, that is, vd = 1. Amazing! We have shown tht v has an inverse.

e 1.16. We will dutifully follow the directives given in the notes from Class 3.

(1) Since 2"+ > 2" for every n > 0, it follows from Fact 1 that u,; is not in
the subfield generated by {u1,...,u,} and a fortiori not in the Q-linear subspace
spanned by {u1,...,u,}. Thus u; ¢ Q and, for each n > 1, u,41 is not a linear
combination of uq, ..., u,. Using this observation, we show that every finite subset
F of the infinite set {wy,us,us,...} is linearly independent over Q. Choose n
big enough so that F' is contained in {w1,...,u,}. It will suffice to show that
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{u1,...,u,} is linearly independent, since any subset of a linearly independent set
is linearly independent. Suppose ¢; € Q and cyu; + - -+ 4+ cpu, = 0 with not all
¢; = 0. Let ¢, be the last non-zero coefficient, that is, ¢;; # 0 but ¢; = 0 for
m < i < n. By dividing by ¢,,, we can express u,, as a linear combination of
U, ..., Un_1, contradicting the observation we made above. This proves linear
independence.

(2) The proof is ezactly the same as for (1), except for substitution of “w” for

Wp

u” everywhere.
(3) Suppose av2 + bv3 + ¢v/5 = 0, with a,b,c € Q. We have to show that
a = b= c=0. Writing this equation three ways, and then squaring both sides, we
obtain the following equations:

—aV2=b/3+cV5 = 2a% = 3b% + 2bcV/15 + 5¢2
—bW3=aV2+cvV5 = 3% = 2a% + 2acV10 + 5¢2
—eVb=aV2+bV3 = 5 =2a*+ 2abV6 + 3b°

Examining the equations on the right, we see that bc # 0 = /15 € Q, ac #
0 = V10 € Q, and ab=0 = V6 € Q. Therefore we must have bc = ac =
ab = 0. Hence, if a # 0 we’d have b = ¢ = 0, which would imply that av/2 = 0,
a contradiction. Similarly, b # 0 would imply bv/3 = 0, and ¢ # 0 would imply
¢v/5 = 0, both of which are contradictions. Thus ¢ =b = ¢ = 0.

e 1.17 (as modified in the notes on Class #1)

(a) Suppose V. = Uy U --- U U, where the U; are proper subspaces of the 2-
dimensional vector space V' over the infinite field K. We can toss out any of the U;
that happen to be {0}, so we assume that each U; has dimension one. Let {v, w} be
a basis of V. Choose n + 1 distinct elements ¢1,...c,+1 € K, and choose, for each
i=1,...,n+1, one of the given one-dimensional subspaces that contains the vector
v+c;w. Since n+1 > n, two of these elements must lie in the same one-dimensional
subspace. This means that v + c;w and v 4 c;w are in a one-dimensional subspace
Ui- Then

v+ow— (v+cw)el; = (¢;—cj)wel; = weU; andv e,
since we had v + ¢;w € U;. This contradicts dim U; = 1.
(b) Let K = {0,1}, the two-element field. Let V be a two-dimensional vec-
tor space over K with a basis {v,w}. Then V has just four elements, namely,

0,v,w,v + w. Now notice that V is the union of the three one-dimensional sub-
spaces {0, v}, {0,w}, and {0,v + w}.



