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PREFACE

Galois theory is one of the most fascinating and enjoyable branches of
algebra. The problems with which it is concerned have a long and
distinguished history: the problems of duplicating a cube or trisecting an
angle go back to the Greeks, and the problem of solving a cubic, quartic or
quintic equation to the Renaissance. Many of the problems that are raised
are of a concrete kind (and this, surely, is why it is so enjoyable) and yet the
needs of the subject have led to substantial development in many branches
of abstract algebra: in particular, in the theory of fields, the theory of groups,
the theory of vector spaces and the theory of commutative rings.

In this book, Galois theory is treated as it should be, as a subject in its
own right. Nevertheless, in the process, I have tried to show its relationship
to various topics in abstract algebra: an understanding of the structures of
abstract algebra helps give a shape to Galois theory and conversely Galois
theory provides plenty of concrete examples which show the point of
abstract theory.

This book comprises two unequal parts. In the first part, details are given
of the algebraic background knowledge that it is desirable to have before
beginning to study Galois theory. The first chapter is quite condensed: it is
intended to jog the memory, to introduce the terminology and notation
that is used, and to give one or two examples which will be useful later. In
the second chapter, the axiom of choice and Zorn’s lemma are described.
Algebra is principally concerned with finite discrete operations, and it
would have been possible, at the cost of not establishing the existence of
algebraic closures, to have avoided all use of the axiom of choice.
Mathematicians do, however, need to know about the axiom of choice, and
this is an appropriate place to introduce it. A reader who has not met the
concepts of this chapter before may omit it (and Chapter 8); preferably, he
or she should read through it quite quickly to get some idea of the issues
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involved, and not worry too much about the details. The third chapter, on
rings, is much more important, and should be read rather carefully. It is an
important fact that polynomials with integer coefficients and polynomials
in several variables enjoy unique factorization, and it is necessary to go
beyond principal ideal domains to establish this fact. There are some other
special results from abstract algebra that are needed (such as basic
properties of soluble groups): most of these are established when the need
arises.

The second, more substantial, part is concerned with the theory of fields
and with Galois theory, and contains the main material of the book. Of its
nature, the theory develops an inexorable momentum. Nevertheless, there
are many digressions (for example, concerning irreducibility, geometric
constructions, finite fields and the solution of cubic and quartic equations):
one of the pleasures of Galois theory is that there are many examples which
illustrate and depend upon the general theory, but which also have an
interest of their own. The high point of the book is of course the resolution
of the problem of when a polynomial is soluble by radicals. I have, however,
tried to emphasize (in the final chapter in particular) that this is not the end
of the story: the resolution of the problem raises many new problems, and
Galois theory is still a lively subject.

Two hundred exercises are scattered through the text. It has been
suggested to me that this is rather few: I think that anyone who honestly
tries them all will disagree! In my opinion, text-book exercises are often too
straightforward, but some of these exercises are quite hard. The successful
solution of a challenging problem gives a much better understanding of the
powers and limitations of the theory than any number of trivial ones.
Remember that mathematics is not a spectator sport!

This book grew out of a course of lectures which I gave for several years
at Cambridge University. I have, however, not resisted the temptation to
add extra material. A shorter course than the whole book provides can be
obtained by omitting Chapter 2, Chapter 8, Section 10.6, Section 18.5 and
Chapter 20. I am grateful to all who attended the course, and helped me to
improve it. I am particularly grateful to Robert J. H. A. Turnbull, who read
and commented helpfully on an early draft and also detected many errors in
the final version of this book.
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Groups, fields and vector spaces

Galois theory is almost exclusively a branch of algebra; the reader is
expected to have some knowledge of algebra, and in particular to have
some knowledge of groups and vector spaces. Read through this chapter
and make sure that you are familiar with what is in it; if you are not, you
should consult standard text-books, such as those by MacDonald! on
groups and Halmos? on vector spaces.

1.1 Groups
Suppose that S is a set. A law of composition o on S is a mapping
from the Cartesian product S x S into S; that is, for each ordered pair (s, s,)
of elements of S there is defined an element s, o s, of S.
A group G is a non-empty set, with a law of composition o on it with the
following properties:

() g10(g2093)=(9,092)0gs for all g,, g, and g; in G — that is,
composition is associative;
(i1) there is an element e in G (the unit or neutral element) such that
eog=goe=g for each g in G;
(iii) to each g in G there corresponds an element g ~! (the inverse of g)
such that gog '=g log=e.
A group G is said to be commutative, or abelian, if g, 0 g, =g, o g, for all
g, and g, in G.
The notation that is used for the law of composition o varies from
situation to situation. Frequently there is no symbol, and elements are
simply juxtaposed: g o h=gh. When G is abelian, it often happens that the

! 1. D. MacDonald. The Theory of Groups, Oxford, 1968.
2 P. R. Halmos, Finite-dimensional Vector Spaces, Springer Verlag, 1974.
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law is denoted by +:g9 o h=g +h, the neutral element is denoted by 0 and
the inverse of an element g is denoted by —g.

Let us give some examples of groups. The integers Z (positive, zero and
negative) form a group under addition. This group is abelian, and 0 is the
unit element.

If S is a non-empty set, a mapping o from S into S is called a permutation
of S if it is one—one (that is, if 6(x) = 6( y) then x = y) and onto (that is, if ye S
there exists x in S such that a(x)=y). The set X of permutations of S is a
group under the natural composition of mappings. In detail, ¢, 05, is
defined by 0, 0 65(x)=0,(0,(x)). If S={1,.. ., n},we write X, for 5. Zsis not
abelian if S has more than two elements.

A subset H of a group G is a subgroup if it is a group under the law of
composition defined on G; that is, if h; and h, are in H, so are h, o h, and
h{'. If G is a group with unit element e, the sets {e} and G are subgroups;
these are the trivial subgroups of G. Here are some examples of subgroups.
The sets

nZ={nm:meZ}, for n>0,

are subgroups of Z, and any subgroup of Z is of this form (why?). The
alternating group A, of all permutations in X, which can be written as the
product of an even number of transpositions (permutations which
interchange two elements, and leave the others fixed) is a subgroup of Z,. If
So is a fixed element of S, the set

{oe X5:0(sg) =50}
is a subgroup of Xi.

Suppose that H is a subgroup of G, and that g is an element of G. We write
Hogfortheset {hog:heH}. Sucha setiscalled a right coset of H in G. The
collection of right cosets of H is denoted by G/H.

If S is any set, the order of S, denoted by |S|, is the number of elements of
(a non-negative integer, or + o). Thus |X,|=n!.If H is a subgroup of G, and
g and g, are elements of G, the mapping which sendsgto gog;tog,isa
permutation of the set G which maps H o g, onto H o g,: thus any two right
cosets of H in G have the same order. As distinct right cosets are disjoint,
|G|=|G/H|.|H| (Lagrange’s theorem) and so |H| divides |G|. The quantity
|G/H| is called the index of H in G. Thus A4, has index 2 in Z,.

A mapping ¢ from a group G, into a group G, is a homomorphism if
d(g1 09,)=9d(g,) o #(g,), for all g, and g, in G. A homomorphism which is
one-one is called a monomorphism, one which is onto is called an
epimorphism and one which is both is called an isomorphism. If ¢ is a
homomorphism of G, into G,, the image

#G,)={0(g):9€G,}
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is a subgroup of G,, and the kernel

¢ '({e})={geG,:¢p(g)=e, the unit of G,}
is a subgroup of G,. It is, however, a subgroup of a special kind.

A subgroup H of a group G is a normal subgroup if g~ ochogeH
whenever geG and he H. We write H<1 G to mean that H is a normal
subgroup of G.If H<a G and C; =H o ¢, and C,=H o g, are right cosets of
H in G, then

Ci0Cy,={ci0¢c3:¢,€Cy,c,€C,})
={hog,o0kog, h,keH}
={ho(g,okogi")og;09,:h keH}
={hog,o09,;heH}=Ho(g, 092),
so that C; o C, is again a right coset of H in G; under this law of
composition, G/H is a group (the quotient group) with H as unit element,
and the natural quotient map q: G — G/H (which sends g to its right coset
H og) is an epimorphism with H as kernel.
On the other hand, if ¢ is a homomorphism of G, into G, with kernel K,
then K<1 G, and there is an isomorphism ¢ from G,/K onto ¢(G,) such
that ¢ = @q (the first isomorphism theorem).

¢
Gl - GZ

G,/K ¢ o= $(G,)

In this diagram, i is the inclusion mapping, which is of course a
monomorphism.

Let us give some examples. If G is an abelian group, any subgroup is
necessarily normal, and we can form the quotient group. In particular we
denote by Z, the quotient group Z/nZ. This is the group of integers (mod n):
we identify two integers which differ by a multiple of n. The group Z, has
order n, for n>0.

There is an epimorphism of 2, onto X, which can perhaps most easily be
described geometrically. Let 1, 2, 3, 4 be four points in a plane, no three of
which are collinear (see Fig. 1.1). Denote the line joining i and j by (i) (there
are six such lines), and denote the intersection of (ij) and (kl) by (ij)(k]) (there
are three such points of intersection).
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(34)

(12)(34)

(13)(24)

(13)

Fig. 1.1
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Then any permutation o of {1,2, 3,4} defines a permutation of the lines
(i) goes to (a(i)o(j))) and a permutation ¢(o) of the points of intersection
(D)) kD) = (a(D)o((olk)o(D)). It is easy to see that ¢ is a
homomorphism, and that (using cycle notation) the kernel of ¢ is

{e, (12)(34), (13)(24), (14)(23)}.

This normal subgroup of S, is called the Viergruppe, and will be denoted by
N. Finally, as

|6(S4)|=|S4/N|=|S4/|N|=6 =S|,
¢(S,)=S3, and ¢ is an epimorphism.

Suppose that A is a non-empty subset of a group G. We denote by (A4)
the intersection of all those subgroups of G which contain A. (A) is a
subgroup of G, the smallest subgroup containing A4, and we call it the
subgroup generated by A.If A is a singleton {x}, we write {x) for {A4); {x)
is called a cyclic subgroup of G. Similarly a group which is generated by a
single element is called a cyclic group. A cyclic group {x) is always abelian.
Ifit is infinite, it is isomorphic to Z; if it has order n, it is isomorphic to Z,. In
this case n is the least positive integer k such that x*=¢; n is called the order
of x. It follows from Lagrange’s theorem that if G is finite then the order of x
divides |G|.

This is the basic group theory that we need; we shall need some more
group theory later, and will develop the results as we go along.

Exercises

1.1 Show that an element of a group has exactly one inverse.
1.2 Write out a proof of the first isomorphism theorem.

1.3 Suppose that H is a subgroup of G of index 2. Show that H is a
normal subgroup of G.

1.4 Suppose that G has exactly one subgroup H of order k. Show that
H is a normal subgroup of G.

1.5 Suppose that H is a normal subgroup of G and that K is a normal
subgroup of H. Is K necessarily a normal subgroup of G?

1.6 Show that any permutation of a finite set can be written as a
product of transpositions.

1.7 Show that a group G is generated by each of its elements (other
than the unit element) if and only if G is a finite cyclic group of
prime order.
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1.8 Describe the elements of Z, which generate Z, (for any positive
integer n).
1.9 Give an example of a non-abelian group of order 8 all of whose
subgroups are normal.
L10 If neZX,, let e(m)=]]i<;(n()—n(@))/[i<;G—i). Show that ¢ is a
homomorphism of X, onto the multiplicative group with two
elements 1 and — 1, and that A, is the kernel of ¢.

1.2 Fields
The study of fields is the first main topic of Galois theory. Here we
shall do little more than recall the definition.

A field K is a non-empty set with two laws of composition, addition and
multiplication, with which the usual arithmetic operations can be carried
out. To be precise, first K is an abelian group under addition (written +).
The neutral or zero element is written as 0 and the additive inverse of x as
—x. Let K* denote the set of non-zero elements K \ {0}. Then multiplication
satisfies the following.

(a) 0.x=x.0=0 for all x in K.

(b) K* is an abelian group under multiplication. The multiplicative
unit is written as 1.

(c) Addition and multiplication are linked by
x(y+z)=xy+xz for all x, y and z in K.

The fields @ of rational numbers, R of real numbers and C of complex
numbers should be familiar and their basic properties will be taken for
granted; remember that R and C belong as much to analysis as they do to
algebra. We shall give one more example of a field here. Recall that the real
number \/ 2 is not rational. (If it were, we could write \/5 = p/q, where p and
q have no common factor. Then 2g% = p?, so that p would be even, and we
could write p=2k. Then g% = 2k?, so that g would be even and 2 would be a
common factor of p and q, giving a contradiction.) Let K consist of all real
numbers of the form r+s\/§, where r and s are rational. K is clearly an
additive subgroup of R. Also

(ry +51\/5)("2 +52\/§)=(r1r2 +2515,) +(ry52 +"251)\/§,
and if r+sﬁ¢0 then r—s\/iyéO, so that r2—2s2#0. Thus if we set
u=r/(r =25, v= =5/~ 25%)

(r+5¢/2u+vy/2)=1.

Consequently K* is an abelian group under multiplication, and so K is a
subfield of R.
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This field K is a very simple example of the sort of field that we shall
consider later. Notice that the only difficulty involved finding a

multiplicative inverse. Why did we consider r — sﬁ, and where did it come
from?

Exercises

1.11 Every field has at least two elements. Show that there is a field with
exactly two elements.

1.12 Let Z, be equipped with a multiplication by defining (a+nZ)o
(b+nZ)=ab+ nZ. Show that this is well defined, and that with this
multiplication Z, is a field if and only if n is a prime number.

1.13 Which of the following subsets of C are subfields of C?

(i) {a+ib:a,beQ}.

(i) {a+wb:a,beQ,0=4—1+./31)}
(i) {a+2'*b:a,beQ}.
(iv) {a+2'3b+4'3c:a,b,ceQ}.

1.3 Vector spaces
We are now in a position to define the notion of a vector space.
Suppose that K is a field. A set V is a vector space over K if first it is an
abelian group under addition and secondly there is a mapping (a, x) = ax
from K x V into V which satisfies
(@) alx+y)=ax+ay,
(b) (+ p)x=0x+ px,
(©) (@f)x=a(fx), and
d 1.x=x
forall o, fin K and x, y in V.
As an example, let S be a non-empty set, and let K° denote the set of all
mappings from S into K. If f and g are in K*, define f+g by

(f +9)s)=fls)+4(s), for s in §,
and, if « € K, define af by
(of)(s)=a( f(s)), for s in S.

Then it is easy to verify that the axioms are satisfied. If S={1,...,n}, we
write K" for KS and, if x e K", write

X=(X1,...,Xp),

where x; is the value of x at j.
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In fact, we need surprisingly little of the theory of vector spaces. The key is
the idea of dimension; as we shall see, this turns out to be remarkably
powerful. Suppose that V is a vector space over K. A subset W of Vis a
linear subspace if it is a vector space under the operations defined on V; for
this, it is sufficient that if x and y arein Wand a is in K then x+ ye Wand
ax € W.If Ais a non-empty subset of V, the span of A, denoted by span (A),is
the intersection of the linear subspaces containing A; it is a linear subspace
of V, and is the smallest linear subspace containing A. If span (4) = V, we say
that A spans V.

We now turn to linear dependence and linear independence. A subset A
of a vector space V over K is linearly dependent over K if there are finitely
many distinct elements x,, ..., x, of 4 and elements 4,,..., 4, of K, not all
zero, such that

AyXy + -+ Ax=0;
if A is not linearly dependent over K, A is linearly independent over K. Note
that, even if A4 is infinite, the sums which we consider are finite. If A4 is finite

and A={x,,...,X,}, where the x; are distinct, A is linearly independent over
K if it follows from

Ayxy+oo o +A,x,=0
that A, =4,=---=4,=0.

A subset A of a vector space V over K is a basis for V if it is linearly
independent and spans V. We shall see in the next chapter that every vector
space has a basis. In fact, our main interest is in finite-dimensional vector
spaces; let us consider them now.

A vector space V over K is finite dimensional if there exists a finite subset
of V which spans V. First we show that a finite-dimensional space has a
finite basis; this is a consequence of the following theorem:

Theorem 1.1 Suppose that A is a finite subset of a vector space V over K
which spans V, and that C is a linearly independent subset of A (C may be
empty). There exists a basis B of V with C< B < A.
Proof. Consider the collection J of all subsets of A which contain C and are
linearly independent. Since |A| < oo, there exists a B in J with a maximum
number of elements. B is independent and C = B < 4; it remains to show
that B spans V.

Let B={b,,...,b,}, where the b are distinct. Ifa € A\ B, Bu {a} is linearly
dependent (by the maximality of | B|) and so there exist A, .. ., 4,in K, not all
zero, such that

j.oa"_llbl + - +l"bn=0.



1.3. Vector spaces 11

Further, 1,#0, for otherwise b,,.. ., b, would be linearly dependent. Thus
a= —Ag'Aby =45 Aby— - =g ' 4,

and a e span (B). Consequently A < span (B), and so span (4) < span (B). As

span (A) =V, the theorem is proved.

We would now like to define the dimension of a finite-dimensional vector
space as the number of elements in a basis. In order to do this, we need to
show that any two bases have the same number of elements. This follows
from the next theorem.

Theorem 1.2 Suppose that V is a vector space over K. If Aspans Vand Cisa
linearly independent subset of V, then |C|<|A.

Proof. The result is trivially true if |A|= o0, and so we may suppose that
|A| < o0.If |C| = o0, there is a finite subset D of C with |D| > |A|. As D is again
linearly independent, it is sufficient to prove the result when |C|< co.
Theorem 1.2 is therefore a consequence of the following:

Theorem 1.3 (The Steinitz exchange theorem) Suppose that C={cy,...,c,}
is a linearly independent subset (with r distinct elements) of a vector space V
over K,and that A={a,,...,a} is a set (with s distinct elements) which spans
V. Then there exists a set D, with C = D = AuC, such that |D|=s and D spans
V.

Proof. We prove this by induction on r. The result is trivially true for r=0
(take D = A). Suppose that it is true for r — 1. As the set Co={cy,...,¢,_, } is
linearly independent, there exists a set D, with C, = Dy = AU C, such that
|Do|=s, and D, spans V. By relabelling 4 if necessary, we can suppose that

Do={C1y e esCr 1yl @yt sy}

If s were equal to r — 1, we would have D, = C; but ¢, e span (D,), so that we
could write

r—1
= Z YiCis
i=1

contradicting the linear independence of C. Thus s>r. As ¢, espan (D), we

can write
r—1 s

6= Y yei+ Y aja;.

i=1 j=r
Not all «; can be zero, for again this would contradict the linear independence
of C. By relabelling if necessary, we can suppose that «,#0. Let D=
{¢1r sCp @y i1, ., a ). Then

r—1 s
-1
a,=a, <c,—2yici— Y cxjaj)
i=1

j=r+1
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so that a, espan (D). Thus
span(D) 2{cy,....¢,_ 1,818y 41, .. a5} =Dy
and so span (D) = span (Dy)=V.
This completes the proof.

Corollary (to Theorem 1.2) Any two bases of a finite-dimensional vector
space have the same finite number of elements.

We now define the dimension of a finite-dimensional vector space V over
K to be the number of elements in a basis. We denote the dimension of V by
dim V. Here is one simple but important result:

Theorem 1.4 Suppose that U is a linear subspace of a finite-dimensional
vector space V over K. Then dim U <dim V, and dim U =dim V if and only
if U=V.

Proof. Let A be a basis for U, and let C be a finite set which spans V.
Considered as a subset of V, A4 is linearly independent, and so by Theorem
1.1 there is a basis B of V with Ac B AuC. Thus

dim U =|A|<|B|=dim V.
If dim U=dim V, we must have 4=B, so that 4 spans V and U=V, of
course if U=V, dim U=dim V.

Corollary 1 Suppose that A is a finite subset of a finite-dimensional vector
space V over K. If |A|>dim V, A is linearly dependent.

Proof. Let U =span (A). If A were linearly independent, 4 would be a basis
for U, so that dim U=|A|. But dim U <dim V, giving a contradiction.

Suppose that V; and V, are vector spaces over the same field K. A
mapping ¢ from V| into V, is called a linear mapping if

P(x+y)=¢(x) + P(y),
P(Ax) = A¢(x)
for all x and yin V; and all A in K. The study of linear mappings is an

essential part of the study of vector spaces; for our purposes we shall only
need one further corollary to Theorem 1.4,

Corollary 2 Suppose that V, and V, are vector spaces over K and that ¢ is a
linear mapping of V, into V,. If dim V| >dim V,, ¢ is not one—one, and there
exists a non-zero x in V, such that ¢(x)=0.

Proof. Let n=dim V,. As dim V,>dim V,, there exist n+1 linearly
independent vectors x,..., X, in V;. Then, by Corollary 1, {$(x,),...,
¢(x,+,)} islinearly dependent in V,, and so there exist il, ..o Ay in K not
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all zero, such that

)’1¢(x1)+ T +'1n+1¢(xn+1)=0
But

Ad(x)+ -+ Ay 11 )= P(Ax g+ + Ay 1 X1 1),
since ¢ is linear, and
x=).1x1+"‘ +ln+1x"+l #0

since {x,,..., X, 1} is linearly independent. As ¢(x) =0= ¢(0), ¢ is not one—
one.

Exercises

£ 114 In K", let ¢;=(0,...,0,1,0,...,0), where the 1 occurs in the jth
: position. Let f;=¢, +--- +e;.
(a) Show that {e,,...,e,} is a basis for K".
(b) Show that {f,,..., f,} is a basis for K".
() Is {ey, f1, fa,---, fo} @ basis for K™
1.15 Suppose that S is infinite. For each sin S, let ¢(t) = 1 if s=t, and let
e,()=0 otherwise. Is {e,:seS} a basis for K5?

1.16 R can be considered as a vector space over Q. Show that R is not
finite dimensional over Q. Can you find an infinite subset of R
which is linearly independent over Q?

i 1.17 Suppose that K is an infinite field and that V' is a vector space over
‘ K. Show that it is not possible to write V=|Ji_; U, where
U,,..., U, are proper linear subspaces of V.

1.18 Suppose that K is a finite field with k elements, and that V'is an r-
dimensional vector space over K. Show that if V= Ji_; U, where
U,,..., U,areproperlinear subspaces of V,then n> (k" — 1)/(k — 1).
Show that there exist (k" — 1)/(k — 1) proper linear subspaces of V
whose union is V.




2

The axiom of choice, and Zorn’s lemma

The study of algebra is very largely concerned with considering finitely
many operations on finitely many objects; even when induction is used, as
in Theorem 1.3, at any one time we consider only finitely many elements.
There are, however, one or two situations when we need to consider
infinitely many objects simultaneously; in order to be able to do this, we
have to appeal to the axiom of choice.

2.1 The axiom of choice

In its simplest form, the axiom of choice can be expressed as
follows. Suppose that {E, },., is an indexed family of sets, and that each of
the sets E, is not empty. Then the axiom of choice says that the Cartesian
product [],.4(E,) is also non-empty: that is, there exists an element (c,),. , in
the product. In these terms, the axiom of choice may seem rather self-
evident: each E, is not empty, and so we can find a suitable c,. The point is
that we want to be able to make this choice simultaneously. The more one
thinks about it, the more one discovers that this is a rather strong
requirement. The axiom of choice is a genuine axiom of set theory; most
mathematicians accept it and use it, as we certainly shall, but there are those
who do not. Arguments which use the axiom of choice, or one of its
equivalents, have a character of their own. You should avoid using it unless
it is really necessary.

22 Zorn’s lemma

In the form in which we have described it, the axiom of choice is a
rather unwieldly tool. There are many statements which are equivalent to
the axiom of choice (in the sense that they can be deduced using the axiom of
choice, and the axiom of choice can be deduced from them). Thus an
equivalent statement is that every set can be ‘well ordered’ (see Exercise 2.2
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for a definition): this is fundamental to the theory of ordinals, and leads to
the idea of ‘transfinite induction’. Some fifty years ago, this was the most
popular and effective way of using the axiom of choice.

More recently, it has become customary to use another equivalent of the
axiom of choice, namely Zorn’s lemma. This is a technical result concerning
partially ordered sets, which proves to be rather simple to use in practice. In
order to state it, we need to say something about partially ordered sets.

A relation < on a set S is said to be a partial order if

(@) x<x forall x in S,
(b) if x<y and y<z then x<z, and
(c) if x<yand y<x then x=y.

For example, if S is a collection of subsets of a set X, the relation EF if
ECF is a partial order on S (‘ordering by inclusion’).

A partially ordered set S is totally ordered if any two elements can be
compared: if x and yare in S then either x <y or y<x. A non-empty subset
C of a partially ordered set S is a chain if it is totally ordered in the ordering
inherited from S.

If A is a subset of a partially ordered set S, an element x of S is an upper
bound for A if a< xfor each ain A. An upper bound may or may not belong
to 4: A may have many upper bounds, or none at all. For example, let S be
the collection of finite subsets of an infinite set X, ordered by inclusion. S
itself has no upper bound, and a subset of S has an upper bound in S if and
only if it is finite.

Finally, an element x of a partially ordered set S is maximal in § if,
whenever x < y, we must have x = y. In other words x is maximal if there are
no larger elements. A maximal element need not be an upper bound for S;
there may be other elements which cannot be compared with x. S may well
have many maximal elements.

We are now in a position to state Zorn’s lemma.

Zorn’s lemma Suppose that S is a partially ordered set with the property that
every chain in S has an upper bound. Then S has at least one maximal element.

We shall not show how to deduce this from the axiom of choice. A proof
can be found in Halmos!. After working through the proof of Theorem 2.1,
you should be able to tackle exercises 2.1 and 2.2.

2.3 The existence of a basis
In our study of Galois theory, we shall only need to apply Zorn’s
lemma three times (in Theorems 8.2 (via Theorem 3.14), 8.3 and 18.5). To

t P. R. Halmos, Naive Set Theory, Springer-Verlag, 1974.
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illustrate how Zorn’s lemma can be used, let us show that every vector space
has a basis.

Theorem 2.1 Suppose that A is a subset of a vector space V over K which
spans V and that C is a linearly independent subset of A (C may be empty).
There exists a basis B of V with CEBc A.

We have proved this in the case that A4 is finite in Theorem 1.1 (and made
essential use of the finiteness of A). Taking A=V and C the empty set, we see
that this theorem implies that every vector space has a basis.

Proof. Let S denote the collection of subsets of 4 which are linearly
independent and contain C. Order S by inclusion. Suppose that T is a chain
in S. Let E={ e D. E is a subset of 4 which contains C. Suppose that
X1, .., X, are distinct elements of E. From the definition of E, there are sets
D,,...,D,in T such that x; € D; for 1 <i<n. Since T is a chain, there exists j,
with 1<j<n,such that D,= D; for 1 <i<n. Consequently x,...,x, areall in
D;. As D;islinearly independent, {x,,. .., x,} islinearly independent. As this
holds for any finite subset of E, E is linearly independent. Thus E€S. E is
clearly an upper bound for T, and so every chain in S has an upper bound.

We can therefore apply Zorn’s lemma, and conclude that S has a
maximal element B. B is linearly independent and C = B < 4; it remains to
show that span (B) = V. Since span (4)=V, it is enough to show that A<=
span (B). If not, there exists a in A which does not belong to span (B). Let
B,={a} uB. We shall show that B, is linearly independent. Suppose that

Aga+Aby 4+ +4,b,=0

where b,,..., b, are distinct elements of B. If 1,+#0,
a=—A5(Aby+---+4,b,)

contradicting the fact that a ¢ span (B). Thus
Aby+---+4,b,=0.

As B is linearly independent, A,=---=4,=0. Thus B, is linearly

independent. Consequently B, €S. But B, 2 B, and B, # B, contradicting the
maximality of B. This completes the proof.

The proof of this theorem should be compared with the proof of Theorem
1.1. In fact, the proofs are very similar: the counting argument of Theorem
1.1 is replaced by a maximality argument.

Exercises

2.1 Show that the axiom of choice is a consequence of Zorn’s lemma.
(Hint: Suppose that {E, },.. , is a family of non-empty sets. Take S to
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beall pairs (B, (cs)se5) Where Bis a subset of A,and cz€ Egfor fe B.
Partially order S by setting (B,(cs)ses) < (C,(c;),ec) if B€C and
cg=cp for fe B. Now carry through the procedures of Theorem
2.1)

A total order on a set S is said to be a ‘well-ordering’ if every non-
empty subset of § has a least element. Use Zorn’s lemma to show
that every non-empty set can be given a well-ordering. (Hint:
Define a partial order < on all pairs (7, <), where T is a subset of S,
and < is a well-ordering on T, by saying that

(Ty, <) <(Tp <)

if first T, < T,, secondly the orderings <, and <, coincide on T
and thirdly

P={xeT,:x<,t}

iscontained in T, whenever tisin T,. Apply Zorn’s lemma to this.)

Suppose that (4, <) is an infinite well-ordered set. Show that there
is a unique element a such that {x: x <a} is infinite, while {x: x <b}
is finite for each b <a. Suppose that A4 is uncountable. Show that
there is a unique element ¢ such that {x:x<c} is uncountable,
while {x:x<d} is countable for each d <c.

Suppose that (4, <) and (B, <) are two well-ordered sets. Show
that one (and only one) of the following must occur:
(i) there is a unique order-preserving bijection i: A — B;
(ii) there exists a unique element a in 4 and a unique order-
preserving bijection i: {x:x<a} - B; ’
(iii) there exists a unique element b in B and a unique order-
preserving bijection i:4 — {y:y<b}.



Rings

The second main topic of Galois theory is the study of polynomials. The
collection of all polynomials with coefficients in a given field forms a ring,
and rings provide a good setting for the study of factorization and
divisibility. This chapter is concerned with developing the properties of
rings that we shall need; the material is to some extent of a preliminary
nature, and you may well be familiar with much of it.

31 Rings
A commutative ring with a 1 is a non-empty set R with two laws of
composition: addition and multiplication. Under addition, R is an abelian
group, with neutral element 0. As far as multiplication is concerned, the
following conditions must be satisfied:
(@) (rs)t=r(s1),
(b) rs=sr,
(©) (r+s)t=rt+st,
(d) thereexists an identity element 1, different from O, such thatr. 1=r,
for all r, sand t in R.

Algebraists study rings which are not commutative under multiplication
(for example, rings of matrices) and rings which do not possess an identity
element 1. Such rings will not concern us: all our rings are commutative, and
possess an identity element 1. For this reason, we shall abbreviate
‘commutative ring with a 1’ to ring.

Let us give some examples.

1. A field is a ring.

2. The integers Z form a ring under the usual operations of addition and
multiplication. ‘

3. The set Z +iZ of all complex numbers of the form m +in, withm and n
integers, forms a ring, under the usual operations.

-




3.1. Rings 19

4. Theset Z+ i\/§ Z of all complex numbers of the form m + i\/g n, with
m and n integers, forms a ring.

5. Suppose that R is a ring. Let R[x] denote all sequences
(ap,ay,...,a,0,0,0,...)

of elements of R which are zero from some point on. We define addition
coordinate by coordinate and define the product of

a=(ay,ay,...,4,0,0,0,...)
and
b=(by,b,..-,b,0,0,0,...)
to be
ab=(agbg,a,by+aghy,a,bg+a b, +agh,,...,0,0,...).

It is straightforward, but tedious, to verify that the conditions for being a
ring are satisfied, with zero element

0=(0,0,...)

and unit element
1=(1,0,0,...).

Now let x denote the element
x=(0,1,0,0,...).

It is readily verified from the definition of multiplication that
x'=(0,0,...,0,1,0,...)

where the single 1 occurs in the (r+ 1)th place. Thus if
a=(ag,4ay,...,a,,0,0,...)

we have
ap=ay+ax+---+ax",

where @;=(a;,0,0, ...). Thus R[x] represents all polynomial expressions in

one variable x. We can consider the map a — a as embedding R as a

subring of R[x]. We shall identify R with its image, and write
a=ag+a;x+---+a,x"

If a#0, we can write a in this form, with a, #0; n is then called the degree of

a.

6. We can also consider polynomials in more than one variable. In the
case of finitely many variables, we can proceed as for R[x] by considering
arrays of elements of R (with only finitely many non-zero terms), or
alternatively can proceed inductively and define

R[xy,. ., x, ) =(R[xy,. . s X 1 DIx,]-
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If S is an infinite set, we define the ring R[X] to be the union of all
polynomial rings R{x,,, ..., x, ],withs,,...,s,in S, with the obvious laws of
composition.

Exercise

3.1 Suppose that S is a set and R is a ring. Let R® denote the set of all
mappings from S to R. Show that R® is a ring, under the operations
defined by

(f+9)5)=f1s)+4g(s), (fg)(s)= fls)g(s).
Show that if S has more than one element then there exist non-zero
elements f and g in R’ for which fg=0.

3.2 Integral domains
The special properties that a ring may have are many and various:
in this section we meet the first of them.

A ring is said to be an integral domain if whenever rs =0 it follows that one
of r and s must be zero. The first four examples of the previous section are
integral domains: R[x] is an integral domain if R is (if p=ay+a;x+--- +
a,x" and q=by+b;x+ -+ +b,x", with a,#0 and b, #0, the coefficient of
x"*"in pq is a,b,,, which is non-zero).

Starting from the integers Z, we can construct the field of rational
numbers Q. An exactly similar procedure can be carried out for any integral
domain, as we shall now describe.

Let R be an integral domain, and let R* denote the non-zero elements of
R. Intuitively, a fraction is an expression of the form r/s, where re€ R and
se R*. But different expressions can represent the same fraction: r, /s, =
r,/s, ifris,=r,s,. Itis therefore necessary to identify two expressions if they
represent the same fraction. This leads us to proceed as follows. On R x R*
we define a relation by setting (r, s;) ~(r,, s,) if r;s,=r,s,. Clearly

(@) (r,s)~(r,s), and
() (ry,s,)~(r;,s,) if and only if (r,,s,) ~(r,,s,;). Further
(©) if (ry,5,)~(r,5,) and (r;, 55) ~(r3, s3) then (ry, 5,) ~ (3, 53).

For r;s,=r,s; and r,s5=r;3s,, so that r 5,5, =7,535; =735,5,,
and so (rys3 —r3s)s, =0. Since 5,0 and R is an integral domain,
Fi83=r35;.

Thus ~ is an equivalence relation on R x R*. Recall that a subset E of
R x R* is an equivalence class if E is non-empty and whenever x € E then
E={y:x~y}, and that it follows from (a), (b) and (c) that distinct
equivalence classes are disjoint and that the union of all the equivalence
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classesis R x R*. Let F denote the collection of equivalence classes. If (r, s) €
R x R*,let r/s denote the equivalence class to which (r, s) belongs. We now
define algebraic operations on F in an obvious way:
r1/SyFra/sy=(r153+7581)/(5152),
(r1/s1)(ra/sz)=(ryr3)/(s152)
It is straightforward to verify that these do not depend upon the choice of
representatives, that they make sense (as s;s,7#0), and that under these
operations F becomes an integral domain. If r/s#0, r#0, and s/r is the
multiplicative inverse of /s: thus F is a field. Finally the map r — r/1 embeds
R as a subring of F. F is called the field of fractions of R.

Suppose now that K is a field. Then the polynomial ring K[x,,...,x,] is
an integral domain. We denote the corresponding field of fractions by
K(x,...,x,): the elements of this field are called rational expressions in
X1,...,X, over K. Similarly we denote the field of fractions of K[X¢] by
K(X5).

Exercises

3.2 Suppose that R is an integral domain, with field of fractions F.
Show that the field of fractions of R[x,,..., X,] can be identified
naturally with F(x,,...,x,).

3.3 Show that an integral domain with a finite number of elements is
always a field.

33 Ideals
Suppose that R and S are two rings. A mapping ¢ from R to S is
called a ring homomorphism if

@) @(ry+ry)=alr))+¢(ry),
(b) @(ryry)=d(r)é(r,), and
© d(lp)=1;

for r;, r, in R.

A homomorphism which is one—one is called a monomorphism,one which
is onto is called an epimorphism and one which is both is called an
isomorphism.

The image ¢(R) is a subring of S. The kernel ¢~*({0}) is not (since
1z ¢ ¢~ 1({0})), but has rather different properties. A non-empty subset J of a
ring R is said to be an ideal if the following conditions hold:

(i) if r and s are in J, so is r+s;,
(it) if reR and seJ, then rseJ.
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Note that if se J,then —s=(— 1)se J, so that J is a subgroup of the additive
group (R, +). The ring R is an ideal in R; all ideals other than R are called
proper ideals.

Let us consider some examples.

1. The sets nZ are ideals in the ring Z, and any ideal of Z is of this form.

2. Suppose that 4 is a non-empty subset of a ring R. We denote by (A4) the
intersection of all ideals which contain A. (A4) is called the ideal generated by
A. Further,

(A)={reR:r=ria,+---+r,a,;r,eR,a;€ A},

for every element in the set on the right-hand side must be in (A4), and it is
easy to see that this set is an ideal which contains A.

3. Wewrite(ay,...,a,)for({a;,...,a,}). Anideal (a) generated by a single
element is called a principal ideal. (a) consists of all multiples of a by
elements of R.

If ¢ is a ring homomorphism from R into S, and ¢(r)= ¢(s)=0, then

¢(r+35)= (1) + ¢(s)=0.

Also if teR, ¢(tr)=(t)d(r)= $(t)0=0; thus the kernel is an ideal. As
¢(1z)#0, the kernel is a proper ideal.

If J is a proper ideal in R, J is a normal subgroup of (R, +); we can
construct the quotient group R/J. We can also define the product of two
(right) cosets: if C, and C, are two cosets, we define

C1C2={C1C2 +j:c1 eCI’CZECZ’jEJ}'
If ¢i¢’,+j" and ¢ c,+j are elements of C,C,,
(c1e2+)) —(ese, +i)=ci(cy —cr) +eale; —c) +( —j) e,

so that C,C, is a coset. It is straightforward to verify that with these
operations R/J is a ring, with unit J+ 1;, and that the quotient map
q:R — R/J is a ring homomorphism, with kernel J. As an example, the
quotient Z,= Z/nZ is a ring, the ring of integers (mod n). Just as for groups,
we have an isomorphism theorem:

Theorem 3.1. Suppose that ¢ is a ring homomorphism from a ring R to a ring
S, with kernel J. There is a ring isomorphism ¢ from R/J onto ¢(R) such that

p=¢ogq.




3.3. Ideals 23

R/J ¢ - $(R)

Proof. ¢ is a group homomorphism from (R, +) to (S, +), so that by the first
isomorphism theorem for groups there is a group isomorphism
@:R/J—-¢(R) such that ¢=¢q. If C, and C, are two cosets of J, we can
write C, =q(x,;)=J +x,, C,=¢(x,)=J + x, for some x, and x, in R. Then
C,C,=4q(x,;x;)=J+x,x,, and so

$(C1 Cy)= ‘;5(‘1(3‘1)‘2)) = P(x1x2) = (x1)P(x,)
= $(g(x,)Plg(x2)) = H(C)H(C).

Similarly

U + 1) =Pg(1x) = d(15) = 5.

Let us give an important example of a ring homomorphism. Suppose that
R is a ring, with unit element 1, and zero element 0. We define a map ¢
from Z into R. Let ¢(0)=0g, let ¢(1)= 1, and if n is a positive integer let
¢(n)= 1+ - - + 1, the sum being taken over n terms. Clearly ¢(n+m)=
o(n)+p(m). If n is a negative integer, let ¢p(n)= —¢p(—n). It is then
straightforward to show that ¢(n+m)= ¢d(n)+ ¢(m) for all n and m, and,
using the distributive law for rings, that ¢(mn)= ¢(m)¢(n). Thus ¢ is a ring
homomorphism from Z into R.

There are now two possibilities. Either ¢ is one-one, which case ¢(2) is
isomorphic to Z, or ¢ fails to be one—one, in which case, by Theorem 3.1,
¢(Z) is isomorphic to the finite ring Z,, for some n. In the former case, we
say that R has characteristic 0, in the latter that R has characteristic n. We
write char R for the characteristic of R.

Suppose that R has non-zero characteristic n, and that n is not a prime
number. We can write n=pq, where 1 <p<n. Then ¢(p)#0 and ¢(g) #0
(since p and g do not belong to nZ) but ¢( p)¢(q) = d(pqg) = ¢(n) =0. Thusif R
is an integral domain, its characteristic must either be 0 or a prime number.

Exercises

3.4 Suppose that g and b are elements of a ring R for which (a, b)=R.
Show that (@™, b")=R for any positive integers m and n.
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3.5 Suppose that R is an integral domain with characteristic k. Show
that, when R is considered as an additive group, every non-zero
element has order k (if k>0) or infinite order (if k=0).

3.6 Suppose that R is an integral domain of characteristic k >0. Show
how R can be considered as a vector space over Z,.

3.7 Construct for each positive integer n an ideal in Z[x] which is
generated by n elements and is not generated by fewer than n
elements.

3.8 Suppose that K is a field. If f=ay+a;x+---+4a,x"eK[x] and
keK, let (p(f)k)=aq,+ak+---+a,k". Show that ¢ is a ring
homomorphism from K[x] to KX. Show that if K is finite then ¢ is
an epimorphism, but not a monomorphism. What happens if K is
infinite?

3.9 Suppose that R is an infinite ring such that R/I is finite for each
non-trivial ideal I. Show that R is an integral domain.

34 Irreducibles, primes and unique factorization domains
Throughout this section we shall suppose that R is an integral
domain.

We say that an element g of R is invertible, or a unit, if it has a
multiplicative inverse: that is, there is an element g ~* of Rsuch thatgq " '=1.
If g is a unit then since R is an integral domain its inverse g ~ ! is unique. If ¢,
and g, are units, s0 is ¢, g, (it has ¢5 '¢; ! asinverse), and so the units form a
group under multiplication.

Suppose now that a is a non-zero element of R which is not a unit. We say
that a factorizes if we can write a = bc, where neither b nor c is a unit. If a
does not factorize we say that a is irreducible. Thus a is irreducible if it is not
zero, not a unit, and whenever a = bc then either b or ¢ is a unit.

In this section we consider the two following questions. When can every
non-zero element of R which is not a unit be expressed as a product of
irreducible elements? If such factorization is possible, when is it essentially
unique?

We begin by characterizing irreducibility in terms of ideals. Let PP
denote the collection of proper principal ideals. We order PP by inclusion.
Recall that a principal ideal (a) in R consists of all multiples of a by elements
of R.If b € (a) we say that a divides b, and write a|b. a|bif and only if (b) < (a).

Theorem 3.2 A non-zero element a of R is irreducible if and only if (a) is a
maximal element of PP.
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Proof. If a is irreducible, a does not divide 1, so that 1 ¢ (a) and (a) is proper.
Suppose that (b) € PP and that (b) = (a). Then (b)# R, so that b is not a unit.
Also b la, so that we can write a = bc. As a is irreducible and bis not a unit, ¢
is a unit. Thus (b)=(a), and (a) is maximal in PP,

Conversely suppose that (a) is maximal in PP. As (a) is proper, a is not a
unit. Suppose that a=bc, where bis not a unit. Then (b) € PP and (b) 2 (a), so
that (b)=(a), by the maximality of (a). Thus b=af for some f in R, a=afc,
and so fc=1, since R is an integral domain. Thus ¢ is a unit and g is
irreducible.

We now introduce a condition which is rather technical, but which allows
us to deal with the first question that we raised. We say that R satisfies the
ascending chain condition for principal ideals (ACCPI) if whenever I, =
I, <15 <--isanincreasing sequence of principal ideals then there exists n
such that I,,=1I, for all m>n.

Theorem 3.3 If R satisfies the ACCPI, every element of PP is containedina
maximal element of PP.
Proof.If (a)isin PP, either (a) is maximal in PP or it is contained in a strictly
larger ideal (a,) in PP. This process an be repeated at most finitely often,
because of the ACCPIL.

Theorem 3.4 If R satisfies the ACCPI, every non-zero element of R which is
not a unit can be expressed as the product of finitely many irreducible
elements of R.
Proof. Suppose that r is a non-zero element of R which is not a unit. If r is
irreducible, there is nothing to prove. Otherwise, () is contained in a
maximal element (a,) of PP (Theorem 3.3). Then g, is irreducible (Theorem
3.2) and a,|r. We can therefore write r=a,r,. If r, is irreducible, we are
finished: if not, we can repeat the argument for r,. Continuing in this way,
either the process terminates after a finite number of steps, in which case we
are finished, or the process continues indefinitely: that is, there is a sequence
a,,a,,ds,... of irreducible elements of R and a sequence r,r,,rs,... of
elements of R such that, for each n,

r=a.a,...a,,
Butthenr,=a,,r,+,50 that(r,) =(r,,,).foreachn. Asa, , , isirreducible,
and therefore is not a unit, (r,)#(r,+,). Thus (r,) is a strictly increasing
sequence of ideals, contradicting the ACCPI. Thus the second possibility
cannot arise, and the proof is complete.

We now turn to the second problem, concerning the uniqueness of
factorization. Here a little care is needed. Suppose that an element r of a ring
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factorizes as a product r=r,r,...r, of irreducible elements. Suppose that
£15€2,- - -» & are units, with &;¢,...¢,=1, and that = is a permutation of
{1,...,n}. Then we can write r=r}...r,, where ri=¢gr,; But this is
essentially the same factorization of r.

In orderto allow for this, we make the following definitions. We say that r
and s are associates if there exists a unit ¢ such that r=¢s. We say that an
integral domain R is a unique factorization domain if

(a) any non-zero element r of R which is not a unit can be written as a
finite product of irreducible elements, and

(®) if r,...r, and s, ...s, are two factorizations of r as products of
irreducible elements then m=n and there is a permutation w of
{1,...,m} such that r; and s, are associates for 1 <i<m.

If r is a non-zero element in a unique factorization domain then the
number of irreducible factors (in a factorization of r as a product of
irreducible elements) is called the length of r, and is denoted by i(r). (If ris a
unit, we set I[(r)=0.) If r=st, then I(r)=I(s) + /(¢).

In order to characterize unique factorization domains, we need to
introduce a new concept. An integer nis irreducible in the integral domain Z
if and only if |n| is a prime number. In algebra it is customary to use the term
‘prime’ in a special way. A non-zero element a of an integral domain is said
to be a prime if a is not a unit and whenever a|bc then either a|b or alc.

Theorem 3.5 A prime element of an integral domain R is irreducible.
Proof. If a is a prime and a=bc then either a|b or a|c. If a|b we can write
b=af for some fin R, so that a=afc. As Ris an integral domain, 1= fc,and
¢ is a unit. Similarly if a|c then b is a unit.

Theorem 3.6 An integral domain R is a unique factorization domain if and
only if R satisfies the ACCPI and every irreducible element of R is a prime.
Proof. Suppose first that R is a unique factorization domain. Suppose that
(a1) =(a,) =---is an increasing sequence of principal ideals. If all the a; are
0, the series terminates. Otherwise there is a least j such that a;#0. The
sequence (l(a;), l(a; ), . . .) is a decreasing sequence of non-negative integers,
and so there exists n such that l(a,,) =I(a,) for all m> n. This means that a,,
and a, are associates, and so (a,,)=(a,) for m> n. Thus R satisfies the ACCPI.

Suppose that r is irreducible and that r divides ab. We can write ab=rc. If
a is a unit, r|b; if b is a unit r|a. Otherwise we can write

a=s,;...s, b=ty ...t,, c=u;...u,

as products of irreducibles. Then
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ab=s,...5t, ...t,=ruU; ... U,

and r is an associate of an s; or a t;. Thus r divides a or b, and r is a prime.

Conversely, suppose that the conditions are satisfied. By Theorem 3.4,
any non-zero element r of R which is not a unit can be expressed as a
product of irreducible elements. Let m(r) be the least number of irreducible
factors in any such product. We prove that condition (b) of the definition
holds by induction on m(r). The result certainly holds when m(r)= 1,for then
r is irreducible. Suppose that m> 1, that the result holds for all s with
m(s)<m and that r=r...r, is an element with m(r)=m. Suppose that
r=s,...8, is another factorization of r into irreducible factors. By
hypothesis, r,, is a prime and r,,|s, .. . s,; by repeated use of the definition of
a prime element, r,, must divide s; for some 1<j<n. By relabelling, we can
suppose that j=n. Then s, = ur,, for some uin R. As s, is irreducible, u must
be a unit, and so r,, and s, are associates. Now if ¥ =(u~'r)r,...r,_, then
m(ry<mandr' =s, ....s,_,. By the inductive hypothesis,m — 1=n—1and
there is a permutation = of {1,...,m—1} such that u™'r, and s,,, are
associates, and so are r; and s, for 2<j<m—1: this establishes the
induction and completes the proof.

Exercises

3.10 What are the units in R[x], where R is an integral domain? What
are the units in Z,[x]?

3.11 Show thatan element a of an integral domain R is prime if and only
if R/(a) is an integral domain.
3.12 Let R=7+i,/5Z
(a) Show that the units are 1 and — 1.
(b) Let p(m+i/5n)y=m?+5n2 $(0)=0, p(1)=¢(—1)=1 and
otherwise ¢(a) > 3. Use this to show that 2 +i\/§ and 2 —i,/5are
irreducible in R.

(c) Show that 2+i\/§ is not a prime; R is not a unique
factorization domain.

3.13 Show that Z +i,/5Z satisfies the ACCPI.

3.14 A properideal I of a ring R is said to be prime if whenever abel then
either ael or bel. Show that a non-zero element ¢ of R is prime if
and only if (c) is a prime ideal.
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35 Principal ideal domains
Recall that a principal ideal (a) in a ring R consists of all multiples
of a by elements of R.

It turns out that many important integral domains have the property
that every ideal is principal. Such integral domains are called principal ideal
domains. Let us give some examples. The ring Z of integers is a principal
ideal domain: the sets nZ areideals in Z, and every ideal is of this form. If K
is a field, the ring K[x] of polynomials in one variable is a principal ideal
domain. This is a consequence of the following theorem:

Theorem 3.7 Suppose that f and g are non-zero elements of K[x] (where K is
a field). Then there exist elements q and r in K[x] such that

g=af +r
and either r=0 or degree r<degree f.
Proof. The proof, which is by induction on degree g, is a matter of long
division. If degree f =0, wecan take g= f ~ g and r =0, and so we need only
consider the case where degree f =k >0. If degree g <k, we can take g=0
and r=g. Suppose that the result holds for all polynomials g of degree less
than n (where n>k) and that

g=got---+g,x"
has degree n. Suppose that

f=fot- -+ fixt
Let A= f; 'g,. Then

X" =Afox" 4 g X"
so that h=g — Ax" ¥/ has degree less than n. By the inductive hypothesis,
there exist g and r such that h=gqf + r and either r =0 or degree r < degree f.
Then

g=(x""*+q)f +r, .
and so the induction is established.

Theorem 3.8 If K is a field, K[x] is a principal ideal domain.

Proof. Suppose that J is an ideal in K[x] other than {0}, and let f be a non-
zero polynomial of minimal degree in J. If g € J, by Theorem 3.7 there exist ¢
and r in K[x] such that

g=qf +r
and either r=0 or degree r <degree f. But r=g—gqfeJ, and so, by the

minimality of degree f, »=0. Thus g €(f). Consequently J = (f). As(f) = J,
the result is proved.
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On the other hand, K[x, y] is not a principal ideal domain: the ideal (x, y)
is clearly not principal. Similarly Z[x] is not a principal ideal domain: the
ideal (2, x) is not principal.

Theorem 3.9 A principal ideal domain R is a unique factorization domain.
Proof. We use Theorem 3.6. Suppose first that I, cI,=--- is an
increasing sequence of principal ideals. Let J = Uj'; 1 I;. Then Jisanideal in
R and so, since R is a principal ideal domain, J ={a) for some a in J. But then
ael; for some j, so that J=(a) < I;. This clearly means that I,=1; for all
k>j.

Secondly suppose that a is irreducible in R and that a | bc. Suppose that a
does not divide b. Then b ¢ (a), so that (a, b) # (a). But (a) is maximal in PP
(Theorem 3.2), and (a, b) is a principal ideal: it follows that (a, b)=R. Thus
there exist p and ¢ in R such that

ap+bg=1.
Multiplying by c,
apc+bcg=c;
as a|bc, it follows that a|c. Thus a is prime.

Exercises

3.15 Suppose that f=k,+kyx+---+k,x" is a non-zero element of
K[x] (where KX is a field). An element o of K is a root of f if fla)=
ko+kyo+ - +k,a"=0. Show that « is a root of f if and only if
fe(x—w), and show that f has at most n distinct roots.

3.16 What are the ideals in Z4? Is it a principal ideal domain?

3.17 Suppose that p is a prime number. Let R be the set of rationals
which can be written in the form r/s, where p does not divide s.
Show that S is a subring of (0. What are the units in R? Show that R
is a principal ideal domain.

3.18 Suppose that R is a principal ideal domain which is not a field.
Show that R[x] is not a principal ideal domain.

36 Highest common factors

Suppose that Bisa subset of a ring R. We say that an element a of R
is a highest common factor of B if first a|b for each bin B and secondly if &’ |b
for each bin B then a’|a. We can express this in terms of ideals: a is a highest
common factor of B if first B = (a) and secondly if B = (a’) then (a) = ().
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This means that if a and a’ are highest common factors of B then (a) = (a'):
thus if R is an integral domain a and &’ are associates.

Note also that, if B is a non-empty set of non-zero elements of a principal
ideal domain R, theideal (B)is principal, and so (B) = (a) for some a; clearly a
is a highest common factor for B. Further there exist b,,...,b, in B and
Fy,...,1, in R such that

a=riby+---+rb,
We shall now show that the first of these properties (but not always the
second: see Exercise 3.20) holds in unique factorization domains.

Theorem 3.10 If B is a non-empty set of non-zero elements of a unique
factorization domain R, B has a highest common factor.

Proof. The idea behind the proof is simple: we consider the irreducible
common factors of B, and combine as many as possible to obtain a highest
common factor. Let

D={reR:r|b for each b in B}

be the set of common factors of B. D is non-empty, since 1eD. If reD and
be B, l(r)<I(b), and so D contains an element a of maximal length. We shall
show that a is a highest common factor of B. /

Suppose that @’ is another element of D. Among the common factors of a
and a’ there is one of maximal length, ¢ say. We can write

a=cd, a=cd'.

Suppose that d’ is not a unit. Let #’ be an irreducible factor of d’. Then
l(em)=Nc)+ 1, so that cn’ does not divide a, since l(c) is as large as possible.
This means that 7’ does not divide d. Now if b is any element of B, we can
write b=af =cdf. Asd'|b,cn’|band so ’'|df. o’ does not divide d,and ' is a
prime (by Theorem 3.7), so that «'| . Thus an’| b. This holds for every b in B,
and so g’ € D. But l(an’) =l(a) + 1, contradicting the maximality of l(a). Asa -
consequence; d’ must be a unit, and so d'|a.

Suppose that B is a non-empty subset of a ring R. We say that B is
relatively primeif 1is a highest common factor of B. If a is a highest common
factor of a non-empty subset B of an integral domain R then the set
{c:cae B} is relatively prime.

Exercise

3.19 Suppose that R is an integral domain. Show that the following are
equivalent:
(i) every finite non-empty set of non-zero elements of R has a
highest common factor;
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(ii) every finite non-empty set of non-zero elements of R has a
least common multiple.

3.20 Show that 1 and — 1 are the highest common factors of 2 and x in
Z[x] and that neither can be written in the form 2a + xb, with a and
b in Z[x].

3.21 Suppose that R is an integral domain with the property that every
non-empty set B of non-zero elements has a highest common
factor of the form y,b,+---+v,b,, with by,...,b, in B and
Y1+ --» ¥y in R. Show that R is a principal ideal domain.

37 Polynomials over unique factorization domains
Galois theory is largely concerned with polynomials in one
variable, with coefficients in a field K. We shall, however, also need to
consider polynomials with integer coefficients, and to consider polynomials
in several variables. In order to deal with both of these, it is convenient to
study polynomial rings of the form R[x], where R is a unique factorization
domain.
In this section, we shall suppose that R is a unique factorization domain,
with field of fractions F. If
f=ag+a +---+ax"
is a non-zero element of R[x], we define the content of f to be a highest
common factor of the non-zero coefficients of f (the fact that this is not
uniquely defined causes no problems). If f has content 1 we say that f is
primitive. If y is the content of f then f=1vg, where g is primitive.
If f is an element of R[x], we can consider f as an element of F[x]. The
next theorem provides a partial converse.

Theorem 3.11 Suppose that R is a unique factorization domain. An element
of R[x] is a unit if and only if it is a unit in R.\/If [ is a non-zero element of
F[x] wecanwrite f = Bg, where g is a primitive polynomial in R[x] and Be F.
If f=p¢ is another such expression then g and g' are associates in R[x];
there exists a unit & in R such that g=¢g'.

Proof. The first statement is obvious.

Suppose that f is a non-zero element of F[x]. We clear denominators:
there exists d in R such that §f € R[x]. Let y be the content of Jf. Then
8f =yg, where g is primitive in R[x], and so f=(5"1y)g=fg.

Suppose that f=pfg is another such expression. We again clear
denominators: there exists « in R such that af and «f’ are in R. Then af =
(@B)g=(af’)g'- As g is primitive in R[x], af is the content of af so is af’
(remember that the content is not uniquely defined!), and so «f and af’ are
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associates in R. This means that there is a unit in R such that «f =eaf:
afg=affg’ =eafg’, so that g=¢g’ and g and ¢’ are associates in R[x].

Theorem 3.12 Suppose that R is a unique factorization domain. If f and g
are primitive elements of R[x], so is fg.
Proof. Suppose that
f=ag+ax+---+a,x",
g=bo+bx+---+b,x",
and

m+n

Jg=cote X+ FCpinX
Let d be the content of fg and suppose that d is not a unit. Let r be an
irreducible factor of d. As R is a unique factorization domain, r is a prime.
Since f is primitive, there exists a least i such that r does not divide a;;
similarly there exists a least j such that » does not divide b;. As ris a prime, r
does not divide a;b;. We consider the coefficient

Civj= Z aib;sj-p+ab;+ Z iy j-iby

k<i I<j
Now r divides a, for k <i, and so r divides ¥, <; a;b; , j_; similarly r divides
Yi<jai+j—ib. But r also divides c;, ;, and so r divides a;b;: this gives the
required contradiction.

Corollary (Gauss’ lemma) An element g of R[x] is irreducible if and only if
either it is an irreducible element of R or it is primitive, and irreducible in
F[x].

Proof. Suppose that g is irreducible in R[x]. If degree g =0, then g must be
irreducible in R. If degree g >0, then g must certainly be primitive. Suppose
that g=f, f, is a factorization in F[x]. By Theorem 3.11, we can write
f1=B191, f-=P,9, with B, and §, in F, and g, and g, primitive in R[x].
Thus

9="0152919>
Now g,g, is primitive, so that, by Theorem 3.11, 8§, is a unit in R. Thus
g=(b,P291)9, contradicting the irreducibility of g.
The converse implications are clear.
We now come to the main result of this section.

Theorem 3.13 If R is a unique factorization domain, so is R[x].

Proof. Suppose that f is a non-zero element of R[x]. Then f =oug, where a is
the content of f and g is primitive in R[x]. We now consider g as an element
of F[x]. F[x] is a unique factorization domain, and so we can write g=
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gy . .- g, as a product of irreducible elements in F[x]. By Theorem 3.11, we
can write each g; as §; f;, where ;€ F and f; is primitive in R[x]. Note that
each f; is irreducible in R[x], by Gauss’ lemma. Thus

g=pf1-- fo
where f=f, ... f;. By Theorem 3.12, f; ... f; is primitive, and so §is a unit
in R, by Theorem 3.11. Thus we can write

S=a,...0;f1.. . [
wherea, ... «;is a factorization of aff as a product of irreducible elements of
R. Thus f can be expressed as a product of irreducible elements of R[x].

Suppose that

f=ay.onfy [
isanother such factorization. Asa, ... a;and «] ... o; are both contents of f,
they are associates in R; since R is a unique factorization domain, /=j and
there exists a permutation z of {1, . ..,j} such that «; and oy, are associates
for 1<i<;.

Further, f; ...fy=A4" ... [, where 1 is a unit in R. By Gauss’ lemma,
fisoos S fhs-s [ are irreducible in F[x]. As F[x] is a unique
factorization domain, m=k and there exists a permutation p of {1,...,k}
and non-zero elements ¢, . . ., & of F such that f;=¢; /7, for 1<i<k.But f;
and f7; are primitive in R[x], by Gauss’ lemma, and so f; and f7, are
associates in R[x], by Theorem 3.11. Thus R[x] is a unique factorization
domain.

Corollary 1 Suppose that f is a primitive element of R[x], that g is a non-
zero element of R[x] and that f divides g in F[x]. Then f divides g in R[x].
Proof. We can factorize g as

g=a1 (xjglgk
where the «; are irreducible in R and the g; are irreducible elements of R[x]

of positive degree. By Gauss’ lemma, each g, is primitive and irreducible in
F[x]. Thus

g=(a ~-°‘j91)92-~~gk
is a factorization of g as a product of irreducible elements of F[x]. As f
divides g in F[x], and as F[x] is a unique factorization domain, we can
write

f=¢g; - 4,
where ¢ is a non-zero element of F and 1<i; < ... <i,<k.Nowg, ...g; is
primitive, by Theorem 3.12. As f is also primitive, ¢ is a unit in R, by
Theorem 3.11, and so f divides g in R[x].

Corollary 2 If R is a unique factorization domain, then so is R[x,,...,x,].
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Exercises

3.22 Express all the cubic polynomials (polynomials of degree 3) in
Z,[x] as products of irreducible factors.

3.23 Express all the homogeneous quadratic polynomials (polynomials
of degree 2 with no constant or linear terms) in Z,[x, y, z] as
products of irreducible factors.

38 The existence of maximal proper ideals

By Theorem 3.2, a non-zero element a of a principal ideal domain
R which is not a unit isirreducible if and only if (a) is a maximal proper ideal
in R. This suggests that maximal ideals are important: Theorem 3.16 in the
next section shows that this is indeed so. Are there many such ideals?

Theorem 3.14 Suppose that J is a proper ideal of a ring R. Then there exists
a maximal proper ideal which contains J.

Proof. We use Zorn’slemma. Let P, denote the collection of proper ideals of
R which contain J. We order P, by inclusion. If C is a chain in P/, let

I,=){I:1eC}.
Ifa, and a,€l,, thereexist I, and I, in C suchthata, €I, anda,el,. AsC
isachain,eitherI, cI,orl,<1,.IfI, =I,,thena, el,andsoa, +a,€l,.
Asl, c1y,a, +a, el Asimilar argument appliesif I, = I,. More trivially,
ifaelyand reR, then ael, for some I, in C. Then rael,, and so racl,.
Thus I, is an ideal.

Further,ifI e C, 1 ¢1,since I is proper. Thus 1¢1,. Consequently I, P;
I,isan upper bound for C,and so P, contains a maximal element, by Zorn’s
lemma. Finally, it is obvious that a maximal element of P, is also a maximal
proper ideal in R.

The generality of Theorem 3.14 suggests that the use of the axiom of
choice is natural here. This is indeed so: if one assumes the truth of Theorem
3.14, one can deduce the axiom of choice. The problem that follows shows
that the full force of the axiom of choice is frequently not needed.

Exercises
3.24 Prove Theorem 3.14 in the case where R has countably many
elements, without using Zorn’s lemma.

3.25 Show that an element of a ring R is invertible if and only if it is
contained in no maximal proper ideal in R.
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3.26 Suppose that J is a proper prime ideal in an integral domain R.
Show that J[x] is prime in R[x]. Show that J[x] is not a maximal
proper ideal in R[x].

3.9 More about fields
A field is a ring in which every non-zero element has an inverse.
How can we recognize when a ring is a field?

Theorem 3.15 Aring Risa field if and only if {0} and R are the only ideals in
R.

Proof. Suppose first that Ris a field, that I isanideal in R other than {0} and
that a is a non-zero element of I. If bis any element of R, b=a(a " 'b) €1, and
so I=R.

Conversely, suppose that R is a ring whose only ideals are {0} and R.If a
is a non-zero element of R, the principal ideal (a) must be R, and so there
exists b in R such that ab=1; consequently R is a field.

Note that if ¢ is a ring homomorphism from a field K into a ring, the
kernel of ¢ is a proper ideal of K, and so ¢ is one-one.

Theorem 3.15 makes it easy to decide when a quotient ring is a field.

Theorem 3.16 If Jis a properideal in a ring R then R/J is a field if and only
if J is a maximal proper ideal in R.
Proof. Let g denote the quotient map R — R/J. If I is a proper ideal in R/J
then ¢~ !(I) is a proper ideal in R; further ¢~ *(I)=J if and only if I={0}. It
follows from this that if J is a maximal proper ideal then {0} and R/J are the
only ideals in R/J, and R/J is a field, by Theorem 3.15.

Suppose conversely that R/J is a field. If a ¢ J, g(a) #0, and so, since q is
onto, there exists b in R such that g(b)=(g(a)) ~!. Thus

q(ab — 1z) =q(a)q(b) — 1R/J =0
so that ab — 1z € J. There therefore exists j in J such that 1;=ab+j, and so
(Ju{a})=R. This means that J is a maximal proper ideal.
Combining this with Theorem 3.2, we obtain the following.

Corollary If ais a non-zero non-unit element of a principal ideal domain R,
R/(a) is a field if and only if a is irreducible.

Applying this to the ring of integers, we see that Z, is a field if and only if n
is a prime number.

Suppose now that K is a field. A subfield of K is a subset of K which is a
field under the operations inherited from K. Any subfield contains 0 and 1.
The intersection of all subfields is again a subfield, the smallest subfield of K.
This subfield is called the prime subfield of K.

x
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K is a ring; we can consider the homomorphism ¢ from Z into K
described in Section 3.3. If K has non-zero characteristic n then, since K is
certainly an integral domain, n must be a prime number. Thus ¢(Z), which is
isomorphic to Z,, is a field. Clearly it is the prime subfield of K.

The other possibility is that K has characteristic 0. In this case ¢(Z) is a
subring of K isomorphic to Z. If g=r/s is a rational, let us define ¢(g) by
setting ¢(q) = ¢(r)¢(s) 1. If /s is another expression for g, rs'=r's, so that

P(NP(s) = p(r)p(s)
and so

d(r)p(s) ™' = (r)p(s) .
Thus ¢ is properly defined, and it is equally straightforward to verify that ¢
is a ring homomorphism of @ into K. ¢(Q) is a subfield of K. Clearly every
element of ¢(Q) is in every subfield of K, so that ¢(Q) is the prime subfield of
K. Summing up:

Theorem 3.17  Suppose that K is a field. If K has characteristic 0, the prime
subfield of K isisomorphic to Q. Otherwise, K has prime characteristic, p say,
and the prime subfield of K is isomorphic to Z,,

Exercise

3.27 Let R be the ring of Exercise 3.17. What are the possible quotient
fields of R?
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The theory of fields, and Galois theory






4

Field extensions

4.1 Introduction

One of the main topics of Galois theory is the study of polynomial
equations. In order to consider how we should proceed, let us first consider
some rather trivial and familiar examples.

Polynomials involve addition and multiplication, and so it is natural to
consider polynomials with coefficients in a ring R. If we consider the
simplest possible case, when R=Z and pis a polynomial of degree 1, we find
there are difficulties: for example, we cannot solve the equation 2x+3=0
in Z.

In the case where R is an integral domain, the field of fractions is
constructed in order to deal with this problem. Thus, in the example above,
if we consider 2 and 3 as elements of Q, the rational field, the equation has a
solution x= —3/2 in Q.

Let us now consider a quadratic equation: x> —2x — 1=0. We consider
this as an equation with rational coefficients: completing the square, we find
that

(x—1)*=2.

As we have seen in Section 1.2, there is no rational number r such that r>=2,
so the quadratic equation has no solution in Q. Instead, the first natural
idea is to consider the polynomial as a polynomial with real coefficients: the
equation then factorizes as (x—1+ \/2—)(x —1- \ﬁ) =0, and we have
solutions 1—./2 and 1+.,/2.

The field R is rather large, however (R is uncountable, while Q is
countable), and it is possible to proceed more economically. Recall that in
Section 1.2 we showed that the set of all numbers of the form r + s\/i, where
r and s are rationals, forms a field K. Clearly R = K = Q, and K appears to
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be much smaller than R. If we consider x2—2x—1=0 as an element of
K[x], we can solve it in K.

Let us express all this in more algebraic language. The polynomial
x%—2x —11is irreducible in Q[x] (and is therefore irreducible in Z[x]). If,
however, it is considered a an element of K[ x] or R[x], it can be written asa
product of linear factors. This suggests the following general programme:
given an element f in K[x] (where K is a field), can we find a larger field, L
say, such that f considered as an element of L[x] can be written as a
product of linear factors? If so, can we do it in an economical way?

4.2 Field extensions

Suppose that we start with a field K. In order to construct a larger
field L we frequently have, by some means or another, to construct L, and
then find a subfield of L which is isomorphic to K (think of how the complex
numbers are constructed from the reals). It is occasionally important to
realize that this sort of procedure is adopted: for this reason we define an
extension of a field K to be a triple (i, K, L), where Lis another field,and iisa
(ring) monomorphism of XK into L.

On the other hand, much more frequently this is far too cumbersome. If
(i, K, L) is an extension of K, the image i(K) is a subfield of L which is
isomorphic to K; we shall usually identify K with i(K) and consider it as a
subfield of L. In this case we shall write L:K for the extension. Thus C:R is
the extension of the real numbers by the complex numbers and R:Q is the
extension of the rational numbers by the real numbers. Very occasionally,
when the going gets rough, we shall need to be rather careful: in these
circumstances we shall revert to the notation (i, K, L).

Suppose now that L:K is an extension. How do we measure how big the
extension is? It turns out that the appropriate idea is dimension, in the
vector space sense. If you are reasonably familiar with the idea of the
dimension of a vector space (as you should be) you will find this an almost
embarrassingly simple idea: the remarkable thing is that it is
extraordinarily powerful.

To begin with, then, we forget about many of the field properties of L.

Theorem 4.1 Suppose that L:K is an extension. Under the operations
(;,1,)> 1+, fromLxLto L

and
(k,)—kl from K xLto L,

L is a vector space over K.
Proof. All the axioms are satisfied.
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Thus C is a real vector space, and R is a vector space over the rationals Q.

We now define the degree of an extension L:K to be the dimension of L as
a vector space over K. We write [L:K] for the degree of L:K. We say that
L:K is finite if [L:K] < oo, and that L:K is infinite if [L:K]= oo.

Thus [C:R]=2,[R:Q] = o0, and, if K is the field of all r + s\/i, with rand
s rational, [K:Q]=2. In this sense, then, K:Q is a more economical
extension for solving x2—2x—1=0 than R:Q.

The next theorem is very straightforward (there is an obvious argument
to try, and it works), but it is the key to much that follows. If M:L and L:K
are extensions, then clearly so is M :K.

Theorem 4.2 Suppose that M:L and L:K are extensions. Then
[M:K]=[M:L][L:K].
Proof. First suppose that the right-hand side is finite, so that we can write
[M:L]=m<oo,and [L:K]=n<o0. Let (x4,..., X,,) be a basis for M over
L,andlet(y,,..., y,) beabasisfor L over K. We can form the products y;x;
(for 1<i<m, 1<j<n) in M. We shall show that the mn elements
(yix;:1<i<m, 1<j<n) form a basis for M over K.
First we show that they span M over K. Let ze M. As (x4,...,x,) is a
basis for M over L, there exist «,...,qa, in L such that
Z=0yXy+ - 0y Xpe
Aseacho;isin L,and as (y,,..., y,) is a basis for L over K, for each i there
exist f;q,. .., Bi, in K such that

=Byt +Buln
Substituting,
m n
z= Z Z ﬂijy]‘xi
i=1j=1
which proves our assertion.
Secondly we show that (y;x;: 1<i<m; 1<j<n)isalinearly independent
set over K. Suppose that
0= Z Z VijYiXi
i=1j=1
where the y;; are elements of K. Let us set

0= '21 Vi ¥; (eL)
i=
for 1<i<m. Then

0 = Z 5,-xi.

i=1
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But (x,,..., x,,) are linearly independent over L, and so §,=0 for 1 <i<m;
that is,

0= 7,y for 1<i<m.
ji=1

Now y;€K, and (y;,...,y,) is a linearly independent set over K.

Consequently y;;=0for all i and j, and the second assertion is proved. Thus

the elements (y;x;);”,,;Z; form a basis for M over K, and
[M:K]=[M:L][L:K]

provided that the right-hand side is finite.

If[M:K]=I1< o0, we can find a basis (z,. .., z,) for M over K. (z,, ..., 2)
spans M over K, and so it certainly spans M over L. Thus [M:L] < co. Also
Lis a K-linear subspace of M, so that [L:K] <o (by Theorem 1.5). Thus,
if the right-hand side is infinite, we must have [M:K]=oo: the proof is
complete.

We can extend this result in an obvious way. A sequence K,:K,_,,
K, 'K, ,,....,K{:K, of extensions, where each ficld extends its
successor, is called a tower. Clearly

[Kn:KOJ = [Kn:Kn—l][Kn—l :Kn—Z:I e [Kl KO]’

we refer to this (and to Theorem 4.2) as the tower law for field extensions.

Exercises

4.1 Suppose that [L:K] is a prime number. What fields are there
intermediate between L and K?

4.3 Algebraic and transcendental elements
Suppose that L:K is an extension, and that A4 is a subset of L. We
write K(A) for the intersection of all subfields of L which contain K and A.
K(A) is a subfield of L, and is the smallest subfield of L containing K and A.
Clearly L:K(A) and K(A):K are extensions. K(A4):K is the extension of K
generated by A.
It is useful to see what a typical element of K(A4) looks like. Let
S={o;...oq e AU{1}}
be the set of all finite products of elements of A4, together with 1,1et V be the
K-linear subspace of L generated by S and let V*=1A{0}. Then
K(A)={rs " :ireV,seV*};
for clearly anything in the right-hand side belongs to K(A), and it is a

straightforward matter to verify that the right-hand side is a subfield of L
containing K and A.
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If A={oy,...,a,}, we write K(oty,...,a,) for K(A). In particular, we say
that an extension L:K is simple if there exists « in L such that L= K(x). Thus
C:R is a simple extension, since C=R(i). Similarly, the field K of all
m+n./2, with m and n in Q, is @(\/E).

It follows from the description of K(A) that,if L:K is a simple extension of
K and if K is countable, then L is also countable; thus R:Q is not a simple
extension.

Suppose now that L:K is an extension and that « € L. There are two
possibilities. First, there may be a non-zero polynomial f =kq+k;x+--- +
k,x" in K[x] such that

fly=ko+ko+ -+ k,o"=0.

In other words, a is a root of f. In this case we say that « is algebraic over K.
Secondly, it may happen that no such polynomial exists: in this case we shall
say that o is transcendental over K. The two possibilities lead to very
different developments: for the time being we shall concentrate on algebraic
elements, and shall consider transcendental elements at a much later stage
(Chapter 18).

At this point, let us remark that the study of transcendental numbers —
that is, elements of R or C which are transcendental over QQ —is one of the
most difficult and profound areas of number theory. It was not until 1844
that Liouville showed that any transcendental numbers exist: this helps us
to understand why Cantor’s set theory, which shows that there are
uncountably many transcendental numbers (see Exercise 4.7), came as such
a shock. Cantor’s result is of no help in particular cases: Hermite’s result
that e is transcendental was proved in 1873, the year before Cantor’s result,
and the fact that 7 is transcendental was proved by Lindemann in 1882. The
proofs are analytical, and far away from the material of this book. For an
account of transcendental number theory, see the book by Baker!.

Let us express these ideas in terms of mappings. Suppose that L:K is an
extension and that o € L. We define the evaluation map E, from K[x] into L
by setting E,(f)=f(a) for each f in K[x]. Notice that E,k is a ring
homomorphism from K[x] into L. It then follows immediately from the
definitions that « is transcendental over K if and only if E, is one—one and
that « is algebraic over K if and only if E, is not one—one.

Suppose that « is algebraic over K. The kernel K, of the evaluation map
E,is anon-zero ideal in K[x]; as K[x] is a principal ideal domain, there is a
non-zero polynomial m, such that K=(m,). Further, since the non-zero
elements of K are the units in K[x], we can take m, to be monic (that is, m,

U A. Baker, Transcendental Number Theory, Cambridge University Press, 1979,
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has leading coefficient 1:
my=ko+kx+-- 4k, x" "1 +x",

and then m, is uniquely determined. The polynomial m, is called the minimal
polynomial of a.

Theorem 4.3 Suppose that L:K is an extension and that a € L is algebraic.
Then m, is irreducible in K[x], the image E, (K[x]) of the polynomial ring
K[x] is the subfield K(x) of L, and we can factor E, as iE,q:

E

o

K[x] - L

K[x1/m,) E.

e K(®)

where q is the quotient mapping, E, is an isomorphism and i is the inclusion
mapping.
Proof. Suppose that m,= fg. Then

0=E,(m,) = E,(f)E/9)=fl)g(a),
so that either fla)=0 or g()=0.If fle)=0, f €(m,), so that m,| fand g isa
unit. Similarly if g € (m,), f is a unit. Thus m, is irreducible. The corollary to

Theorem 3.16 implies that K[x]/(m,) is a field. Now by Theorem 3.1 we can
factorize E, in the following way:

E,
K[x] el §
q i
K[x]/(m,) * e EJ(K[X])

Since E, is an isomorphism, this means that E,(K[x]) is a subfield of L.
Since E.k)=k if keK and E,x)=a, E,(K[x])2Ku{a}, and so
E,(K[x]) =2 K(a). But clearly E (K[x]) < K(«), and so the proof is complete.

Let us now relate these ideas to the degree of an extension.
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Theorem 4.4 Suppose that L:K is an extension and that o€ L. Then o is
algebraic over K if and only if [K(a): K] < co. If this is so, then [K(x): K] is
the degree of m,.
Proof. First, suppose that [K(a): K] =n< c0. Consider the n+ 1 terms 1, «,
a?,...,a" in K(). Either two terms " and o (with 0 <r<s<n) are equal, in
which case x° — x"is in the kernel K, of the evaluation map E,, or they are all
distinct. In this latter case, by Corollary 1 to Theorem 1.4, {1,a,...,a"} are
linearly dependent over K. Thus there exist kg, k4, . . ., k,, not all zero, such
that ko +kya+- - +k,0"=0. Then

f=ko+kx+ - - +kx"eK,
so that in either case E, is not one—one.

Next suppose that « is algebraic over K, and that m, is the minimal
polynomial of «. We shall show that if n=degree (m,) then {1,a,...,a" "1}
forms a basis for K(«x) over K. First we show that {1,a,...,a" " *}isalinearly
independent set over K. For if

ko 1+ka+---+k,_a" =0,
let us set f=ko+k;x+---+k,_;x""*. Then feK,=(m,) and degree f <
degree m,,so that f=0,and k,=k, =- - - =k, ., =0. Secondly we show that
{1,a,...,0" !} spans K(«). By Theorem 4.3, if f€ K(x) then f=E,(f) for
some feK[x]. We can write

f=mgq+r
where r=0 or degree r<n. Then f=E (f)=E,(m,)E,(q)+ E,(r)= E (r) so
that if r=ko+k,x+---+k,_x"71,

B=ko+ko+ - +k, 0" tespan(l,a,...,a" ")

Exercises

4.2 Suppose that L:K and that K, and K, are two intermediate fields
such that L=K(K,, K,). Show that [L:K]<[K,:K][K,:K].

4.3 Suppose that K(x):K is a finite simple extension. For each f in
K(a),let T,(f)=af. T, is a linear mapping of K(«) (considered as a
vector space over K) into itself. Show that det(x]—T,) is the
minimal polynomial of « over K.

4.4 Show that x3+3x+ 1 is irreducible in Q[x]. Suppose that « is a
root of x>+3x+1 in C. Express « ! and (1+a)~! as linear
combinations, with rational coefficients, of 1, « and 2.

4.5 Suppose that L(x):L:K and that [L(«):L] and [L:K] are relatively
prime. Show that the minimal polynomial of a over L has its
coefficients in K.

4.6 Suppose that [L:K] is a prime number. Show that L:K is simple.
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44 Algebraic extensions
Theorem 4.4 has the following important consequence.

Theorem 4.5 Suppose that L:K is an extension. The set L, of those elements
of L which are algebraic over K is a subfield of L.
Proof. Suppose that « and ff are in L,. As f is algebraic over K, f is certainly
algebraic over K(x). As K(a)(f)=K(a, f), we have [K(a, f):K(x)] < o0, by
Theorem 4.4. Also [K(a): K] < oo, by Theorem 4.4, so that, by Theorem 4.2,
[K(x, B):K]=[K(x, B):K(0)] [K():K] < o0.
Now K(a+ f) = K(a, f), and so [K(xz+ f):K] < oc. Using Theorem 4.4

again, we see that o + § is algebraic over K. Similarly af is algebraic over K.

Finally, if « is a non-zero element of L,, with minimal polynomial
f=ko+kyx+ -4k, x" "' +x"

let g=1+k,_,x+---+kox". Then gla Y)=a "fla)=0 so that a~! is

algebraic over K.

This theorem gives some indication of how useful the idea of the degree of
an extension is. We have shown that if « and f are algebraic over K then so
are o+ f§ and af, but we have not had to produce polynomials in K[x] of
which these elements are roots.

We say that an extension L:K is algebraic if every element of L is
algebraic over K. Not every algebraic extension is finite: for example, if A
denotes the algebraic numbers, the set of complex numbers which are
algebraic over Q, then A:Q is infinite (see Exercise 5.8 below). Finite
extensions are characterized in the following way:

Theorem 4.6 Suppose that L:K is an extension. The following are
equivalent:

() [L:K]< oo,
(ii) L:K is algebraic, and L is finitely generated over K;
(ili) there exist finitely many algebraic elements a,, ..., a, of L such that
L=K(oy,...,0,).

Proof. Suppose first that L: K is finite. If o € L, then [K(x): K] <[L:K] < oo,
so that « is algebraic over K (Theorem 4.4); thus L:K is algebraic. If
(B:,. .., B,)isabasisfor L over K, then L=K(f,,..., B,), so that L is finitely
generated over K. Thus (i) implies (ii), and (ii) trivially implies (iii).
Suppose now that (iii) holds. Let Ko=K, and let K;=K(a,,...,a)=
K;_ (), for 1<j<n. Note that L=K,. Each «; is algebraic over K;_,, so
that [K;:K;_;]<oc. We have a tower of extensions, and consequently

[LK] = [Kn:KO:I = [Kn:Kn—l] [Kn~1 :Kn—2] tee [Kl :KOJ <.



44. Algebraic extensions 47

Corollary 1 If L:K is an extension and if o is an element of L which is
algebraic over K, then K(x):K is algebraic.
This is a special case of the next corollary.

Corollary 2 Supposethat L:K is an extension and that S = L. If eacha €S is
algebraic over K, then K(S):K is algebraic.
Proof . If p € K(S), there exist a4, .. ., a, in S such that f e K(a,,. . ., a,). By the
theorem, K(o,,...,a,):K is algebraic, and so f is algebraic over K.

The proof of this corollary shows that, even though an algebraic
extension may be infinite, it is possible to deal with it by using arguments
involving finite extensions. The same is true of the next result.

Theorem 4.7 Suppose that M:L and L:K are algebraic extensions. Then
M:K is algebraic.
Proof. Suppose that a e M, and that

me=lo+Ix+---+1x"
is its minimal polynomial over L. Then « is algebraic over K(l,,...,1,) and
)
(Ko, ..., 1)@):K(y, ..., 1) ]=[K(dy, ..., L, 2):K(ly,...,l)]< 0
by Theorem 4.4. Also
[K(y,...,1,):K}< oo
by Theorem 4.6, and so
[K(e):K]<[K(ly,...,1,,2):K]
=[K(gps-- sl a):K(lg, ..., L)I[K(,- .-, 1,):K]
<oo;

thus « is algebraic over K.

Exercises

4.7 Show that if L:K is algebraic and K is countable then L is
countable. Show that there exist real numbers which are
transcendental over the rationals.

4.8 Suppose that L:K is an extension, that o is an element of L which is
transcendental over K, and that f is a non-constant element of
K[x]. Show that f(«) is transcendental over K. Show that, if 8is an
element of L which satisfies f{f)=a, then f is transcendental over
K.
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49 Suppose that a and b are complex numbers which are
transcendental over Q. Is a® transcendental over Q?

4.10 Suppose that K(«, 8):K is an extension, that « is algebraic over K,
but not in K, and that f§ is transcendental over K. Show that
K(a, f):K is not simple.

45 Monomorphisms of algebraic extensions

The next result uses finiteness in a rather different way. If L:K is an
extension and 7: L — L is a monomorphism with the property that z(k)=k
for each k in K, we say that 7 fixes K.

Theorem 4.8 Suppose that L:K is algebraic and that t:L— L is a
monomorphism which fixes K. Then T maps L onto L.

Proof. Certainly t(0)=0. Suppose that o is a non-zero element of L. Let m,
be its minimal polynomial over K. Let R be the set of roots of m, in L. If
BeR,

m,(t(B))=1(m,(B)) =7(0)=0

so that T maps R into R. Now 7 is one-one and R is finite (see Exercise 3.15)
and so T must map R onto R. Thus there exists §in R such that 7(f)=o. As

this holds for each « in L, T must map L onto L.
A ring monomorphism of a field onto itself is called an automorphism.

Exercise

4.11 Show that the condition that L:K is algebraic cannot be dropped
from Theorem 4.8.
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Tests for irreducibility

51 Introduction

Suppose that f is a polynomial in K[x], where K is a field. Since
K[x] is a unique factorization domain, f can be expressed essentially
uniquely as a product of irreducible polynomials. This raises the important
practical problem: how do we recognize whether or not a given polynomial
is irreducible?

There are many important cases when the field K which we consider is
the field of fractions of a unique factorization domain R: this is so in the
most important case of all, when the field is the field Q of rational numbers.
In such a situation, Gauss’ lemma (the corollary to Theorem 3.12) is
particularly useful. Recall that Gauss’ lemma implies that, if f is irreducible
in R[x], then f is irreducible in K[x].

As an application (which we shall need in the next chapter) let us consider

f=x*-3x—1e7[x].

As fis a cubic, if it factorized in Z[x] it would have a linear factor, and this
would have to beeither x—1 or x+ 1. Butf(1)= —3and f(—1)=1,andso f
is irreducible in Z[x]. By Gauss’ lemma, f is irreducible in Q[x].

In order to show the importance of Gauss’ lemma, let us sketch the proof
of the following result, due to Kronecker:

Theorem 5.1 There is an algorithm to express any element of Z[x] as a
product of irreducible factors.

An algorithm is a procedure which takes a finite number of steps; the
number of steps depends upon the polynomial in question, but an upper
bound can be given for it in each case.
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Proof. Suppose that f has degree n. Let r be the greatest integer such that
2r<n. If f is not irreducible, f must have a non-unit factor of degree less
than or equal to r. We search for such a factor. Let ¢;= f{j), for 0<j<r. If
¢;=0forsome 0 <j<r,then x —j is a factor of f. Otherwise, if g is a factor of
S in Z[x] then g(j) must divide c; for 0 <j<r. Each ¢; had finitely many
divisors, and an algorithm exists to determine them. Suppose that
(do,...,d,) is such that d; is a divisor of ¢; for 0 <j <r. There exists a unique
polynomial g in @[x] of degree at most r such that g(j)=d; for 0<j<r:

g=2 dig;,
j=0

x—k
gj_oskg,k;ej (j_k)

We can now test (by further algorithms) whether g € Z[x] and whether g
divides f. As there are only finitely many (r+ 1)-tuples (d,,...,d,) to
consider, this means that there is an algorithm to find a non-unit factor of f,
if one exists. Repeated use of the algorithm leads to a factorization as a
product of irreducible factors.

This result is of theoretical importance, but the procedure is too
cumbersome to use in practice. Trial and error may enable us to factorize a
polynomial, but will not establish that a polynomial is irreducible. It is
therefore important to establish simple criteria which will ensure that a
polynomial is irreducible. This is what we shall do in the present chapter.

where

Exercises
5.1 Write (an outline of) a computer programme to implement the
algorithm of Theorem 5.1.
5.2 Suppose that
f=ag+ - +ax"
is a polynomial in Z[x] of degree n, and that max;|a| =K. Obtain

an upper bound, in terms of n and K, for the number of calculations
required to determine whether or not f is irreducible.

5.3 Suppose that K is a field with finitely many elements. Show that
there is an algorithm to express any element of K[x] as a product
of irreducible factors.

5.4 Suppose that X is a field and that f and g are relatively prime in
K[x]. Show that f — yg is irreducible in K(y)[x].
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5.5 Suppose that K(x):K is simple and that o is transcendental over K.
Show that if f€ K(x) and f¢ K then K(x):K(f) is finite and S is
transcendental over K. Show that, if §= f{a)/g(c), where f and g
are relatively prime in K[x], then

[K(x):K(B)] =max(degree f, degree g).

5.2 Eisenstein’s criterion
Eisenstein’s critcrion is concerned with factorization in R[x],
where R is an integral domain.

Theorem 5.2 (Eisenstein’s criterion) Suppose that R is an integral domain,
and that

f=fo+fix+---+fx"eR[x]
has the property that f,,..", f, arerelatively prime. Suppose that p is a prime
in R, and that p|f; for 0<i<n, while p does not divide f, and p* does not
divide f,. Then f is irreducible in R[x].
Proof. Suppose that f=gh where

g=4got---+gx
and

h=hy+---+hx*
are not units in R. If r were equal to 0 (so that g =g,), it would follow that g,
divides f; for 0 <j<n, so that g, would be a unit: this gives a contradiction,
so that r> 1. Similarly s> 1. By hypothesis, p2 does not divide gyh,, so that
p cannot divide both g, and h,. Without loss of generality we may suppose
that p does not divide h,.

Now g,h,= f,, so that, by hypothesis, p does not divide g,. Let i be the

least integer such that p does not divide g;. Then 0<i<r<n, so that p|f;
that is,

pl(hogi+hlgi—1 + -+ +higo)

As plg; for j<i, plhog;. As p is a prime, p|h, or plg;, giving a contradiction.
As an example (which we shall need later on) let us observe that

f=x*—4x+2

is irreducible over Z[x], by Eisenstein’s criterion (with p=2), and so f is
irreducible over Q[x], by Gauss’ lemma.

Exercises

5.6 Suppose that R is an integral domain and that
f=fotfix+-- +fx"eR[x]
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has the property that f,,.. ., f, are relatively prime. Suppose that p
isa prime in R, and that p| f; for 1<i<n, while p does not divide f,
and p? does not divide f,. Show that f is irreducible in R[x].
5.7 Show that if p is a prime number then x" — p is irreducible in Q[x].
5.8 Let 4 denote the field of real numbers which are algebraic over Q.
Show that [4:Q] = co.
5.9 Show that the positive pth roots of 2 (as p varies over the primes)
are linearly independent over Q.

5.10 Show that x> —4x+2 and x*—4x+2 are irreducible over Q(i).

53 Other methods for establishing irreducibility

Even if Eisenstein’s criterion cannot be applied directly, it is
sometimes possible to apply it after making a suitable transformation. For
example, if

f=x*+4x3+10x*+ 12x + 7 € Z[x],
itis not possible to apply Eisenstein’s criterion directly. If we write y=x+1,
we find that

f=y*+4y*+2.
As

g=x*+4x>+2
is irreducible in Z[x], by Eisenstein’s criterion, f must be irreducible too.
The problem of course is to find a suitable transformation: this is a matter of
ingenuity and good fortune.

There is another technique which can sometimes prove useful when we
are considering polynomials in Z[x]. Suppose that p is a prime number: for
each integer n, let n denote the image (mod p) of n under the quotient map
from Z to Z,,. This quotient map induces a ring homomorphism from Z[x]
onto Z,[x]; if

f=ap+ax+---+ax"eZ[x],
then
f=dp+ayx+---+ax"eZ,[x].

Theorem 5.3 (Localization principle) Suppose that
f=ap+a;x+---+ax"eZ[x],

and that ay, . . ., a, are relatively prime. Suppose that p is a prime which does

not divide a,. If f is irreducible in Z,[x], then f is irreducible in Z[x].

Proof. Suppose that f factors as f=gh, where g and k are not units. As in
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the proof of Eisenstein’s criterion, since a,,...,a, are relatively prime,
degree g =1 and degree h> 1; of course degree g+ degree h=degree f.

As p does not divide a,, degree f=degree f. As f=gh, degree f=
degree g+degree h. As degree g<degreeg, and degree h <degree h, we
must have that degree g=degreeg>1 and degree h=degree h> 1. Thus
f=gh is a non-trivial factorization of f.

Notice that the localization principle can also be used to establish
Eisenstein’s criterion in Z[x]. With the notation of Theorem 5.2, f= f,x",
so that, as f=gh, go=0(mod p) and h,=0(mod p) so that fo=g.h,=
0 (mod p?), giving a contradiction.

To give another example of the use of localization, let us show that
f=x"+px+p? is irreducible in Z[x] (where p is a prime number). First
observe that if a is a root of f in Z, then 00 <0 and «=0(mod p) so that
o= —kp for some positive integer k. From this it follows that

(=kyp"~2=k—1,
which clearly has no solution. Thus, if f=gh is a factorization in Z[x],

degree g=>2 and degree h=2. As before, g,=0 (mod p) for i<degree g and
h;=0(mod p) for j<degreeh, so that

pP=gohi +91ho=0 (mod p?)

giving a contradiction.

Exercises
5.11 Show (by making the transformation y=x — 1) that if p is a prime
number then 1+x+---+xP ! is irreducible over Q.

5.12 Let #=2n/7. What is the minimal polynomial of ¢ over Q? What
is the minimal polynomial of 2 cos 8 over @7
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Ruler-and-compass constructions

One of the problems that greatly exercised the Greek mathematicians and
their successors was to find a method, using ruler and compass, to trisect a
given angle. We shall show that this is not possible — it is not possible to
trisect the angle n/3 — using the ideas of Chapter 4. It is remarkable that
these ideas, which are really rather elementary, resolve the problem so
decisively: an idea does not need to be complicated in order to be effective.

6.1 Constructible points

There are many constructions that one can carry out with ruler
(straight-edge) and compasses alone. Many children, on first being given a
pair of compasses, find out for themselves how to construct a regular
hexagon (and so construct the angle n/3). I hope that you remember enough
school geometry to know how to bisect an angle, to drop a perpendicular
from a point to a line, to draw a line through a point parallel to a given line,
and so divide an interval into a given rational ratio, using ruler and
compasses alone.

Let us try and describe the situation in an accurate but informal way. We
begin with two distinct points P, and P, in the plane. We take P as origin,
and take as our first axis the line through P, and P,, and as our second axis
the line through P, perpendicular to PyP,. We take P,P; as our unit of
distance. In this way, we can think of each point in the plane as an element
(x, y) of Rx R. We call x and y the coefficients of the point. From what we
have said in the preceding paragraph, we can certainly construct any point
(r1, r,) with rational coefficients, using ruler and compasses alone. There are
many other points that we can construct, too: let us describe more
accurately what this means.

We shall say that a point P is constructible if there exists a finite sequence
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Py, P,...,P,=P of points in the plane with the following property. Let
S;={Po,Py,...,P;}, for 1<j<n.
For each 2<j<n, P; is either
(i) the intersection of two distinct straight lines, each joining two
points of S;_, or
(i) a point of intersection of a straight line joining two points of S;_,
and a circle with centre a point of S;_; and radius the distance
between two points of S;_, or
(ii)) a point of intersection of two distinct circles, each with centre a
point of §;_; and radius the distance between two points of §;_,.

In case (iii), the centres must be different if the circles are to intersect: the
radii may or may not be different.

We now wish to associate some fields to these geometric ideas. We do this
in a very straightforward way: R:Q is an extension; if P=(x, y) is a
constructible point, we consider the extension Q(x, y): Q generated by x
and y.

Theorem 6.1 If P=(x, y) is a constructible point, the extension Q(x, y):Q is
Sfinite, and [Q(x, y):Q]=2", for some non-negative integer r.

Proof. Since P is constructible, there exists a sequence Py, P,,...,P,=P of
points which satisfies the requirements of the definitions. Let P;=(x;, y;),
and for 1<j<n let

Fj=Q(x19 V1:X25 Vas ot axja y])
Then F;, , =Fj(X;,1,yj+1), for 1<j<n. We shall show that [Fjs1:F]=1
or 2: then, by the tower law, [F,:F,]=[F,:Q]=2* for some non-negative
integer s. But Q(x, y)=Q(x,, y,) is a subfield of F, containing Q, so that, by
the tower law again,

[Fo:Q(x, y)1[Q(x, y): Q] =27,
and so [Q(x, y):Q]=2", for some non-negative integer r.

It remains to show that [F;,,:F;]=1or 2.

If (a,,b,) and (a,, b,) are two points in §;, the equation of the line joining
(ay,by) and (a,, b,) is (x —ay)(by —by)=(a, —a,)(y—b,), and therefore has
the form

Ax+uy+v=0,
where A, p and v are elements of F;. Similarly the equation of the circle,
centre (a4, b,) and radius the distance between points (a,, b;) and (a5, b3) of
S, is

(x—ay)*+(y—b;)*=(a, —a3)* +(b,—b3)?,
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and therefore has the form
x2 4y 4 2gx+2fy+¢c=0,

where f, g and c are elements of F;.
We are now in a position to consider the three cases that can arise.
Case (i). (x4, y;+1) is the intersection of two distinct straight lines, each
joining two points of S;. In this case (x;,,, y;+,) is the solution of two
simultaneous equations

Ayx+p, y+v, =0,
Ax+u,y+v,=0

with coefficients in F;. Solving these, we find that x;, ; and y;, , arein F;,so
Case (ii). (x;+ 1, y;+1) is a point of intersection of an appropriate straight
line and circle. In this case (x;.;, y;4,) satisfies equations

Ax+py+v=0,
x2+y?+2gx+2fy+c=0

with coefficients in F;. Suppose that 41#0. We can then eliminate x, and
obtain a monic quadratic equation in y. If this factors over F; as

(y—a)(y—p=0

then y;,,=a or B, so that y;,, € F;; substituting in the linear equation,
X;+1€F;, so that F; ,=F; and [F;.,:F;]=1 If the quadratic is
irreducible, it must be the minimal polynomial for y; . ,: thus, by Theorem
44, [Fyj+1):F1=2. As xj = =27 My +V), X;+1€F(y;+,) and so
Fio1=FfXj51, ¥i+1)=Fyj+1) If =0, then p+#0, and we can repeat the
argument, interchanging the roles of X;4q and yj .

Case (iii). (x;+ 1, y;+1) is a point of intersection of two suitable circles. In

this case (x;,, y;+,) satisfies equations
x2+y2+2g,x+2f, y+¢, =0,
x> +y2+2g,x+2f,y+c,=0
with coefficients in F;. Subtracting, (x;.,, y;.,) satisfies the equation

2(g; —g)x+2f1 — f)y+(c, —c)=0.
We cannot have g, =g, and f,=f,, for then the circles would be
concentric, and would not intersect. Thus this case reduces to the previous
one.
Although the proof of this theorem may appear to be rather lengthy, you
should note that almost all the field theory appears in the first paragraph:
the rest is coordinate geometry of a particularly simple kind.
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Exercises

6.1 Describe how the constructions mentioned in the first paragraph
of Section 6.1 are made.

6.2 Suppose that the point (I,0) is constructible (where />0). Show
how to construct the points (\ﬁ ,0) and (I2,0).

6.3 Construct a regular pentagon.

6.4 Suppose that P=(x, y) is a constructible point. Let « and f§ be
elements of Q(x, y). Show that («, ) is a constructible point.

6.2 The angle 7/3 cannot be trisected

We have observed that, using ruler and compasses, we can
construct the angle n/3. We shall now show that this angle cannot be
trisected, using ruler and compasses alone, in the way that we have
described. Let us write o for n/9. If we could trisect n/3, there would be a
constructible point P, other than P, on the line given by

X sin =y cOs a;
intersecting the line PP, with the circle with centre P, and radius P,P,, it
would follow that (cos a, sin &) would be constructible. As

[Q(cos a, sin a): Q] = [Q(cos a, sin a): Q(cos &) ] [Q(cos «): Q]
it would follow from the tower law and Theorem 6.1 that [Q(cos ): Q] =2',
for some non-negative t. Now recall that

cos 30=4(cos 9)> -3 cos §
and that cos (n/3)=3, so that

4(cos a)* —~3 cos a —3=0.
Let 0=2cosa. Then

6®—36-1=0.
As we have seen in Section 5.1, x> —3x —1 is irreducible over @, and is
therefore the minimal polynomial for ¢ over Q. Thus, by Theorem 4.4,
[Q(6):Q]=3. But Q(o)=Q(cosa), and so we have the required
contradiction.

Exercises
6.5 Show that the point (2!/3,0) is not constructible (impossibility of
‘duplicating the cube’).

6.6 Show that it is not possible to construct (a) a regular nonagon or
(b) a regular heptagon, using ruler and compasses.
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6.3 Concluding remarks

Theorem 6.1 provides a necessary condition which a constructible
point must satisfy. Is it a sufficient condition for a point to be constructible
and, if not, what is a sufficient condition? These are much more difficult
questions than those which we have answered in this chapter. Bear them in
mind as the theory develops.

Exercise

6.7 (a) Suppose that x and y are real numbers such that
[Q(x, y):Q]=2. Show that (x, y) is constructible.
(b) Suppose that x and y are real numbers, and that Q=F, <
F, c--- < F,=Q(x, y)is an increasing sequence of fields such that
[F;.i:F;]1=2 for 0<j<r. Show, by induction on r, that (x, y) is
constructible.
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Splitting fields

Suppose first that f € Q[x]. As we have seen, f may be irreducible; if not, we
can factorize f in an essentially unique way into irreducible factors. This is
as far as factorization can go in Q[x].

On the other hand, Q is a subfield of C and we can consider f as an
element of C[x]. Now the field C has the remarkable property that any non-
unit element of C[x] can be written as a product of linear factors. This is, of
course, an immediate consequence of the fact that any non-constant
polynomial pin C[x] hasa rootin C. This fact (the ‘fundamental theorem of
algebra’) is usually proved by complex function theory: if p had no root, 1/p
would be a non-constant bounded analytic function on C, contradicting
Liouville’s theorem. (You may feel that there is too much analysis in this.
Some analysis is certainly needed, since the real field R is an analytic
construction. Be patient, and be sure to tackle Exercise 11.11 in due course.)

If we consider f as an element of C[x], then, we can write

f=Mx—0y)...(x—ay,),
where / is a rational number and a4, . . ., &, are complex numbers. Each ¢; is
algebraic over Q, since f(a)=0. Thus, if L=Q(x,,...,a,), Lis algebraic over
Q and L is finitely generated over Q, and so [L:Q] < oo (Theorem 4.6).
Further f factorizes into linear factors over L. As far as f is concerned, then,
L is large enough for our purposes.

The above argument works because of the special properties of the
complex field C. Our aim in this chapter is to show how, starting with an
element f of K[x], where K is an arbitrary field, we can construct a finite
extension L:K such that f factorizes into linear factors over L.

Exercise

7.1 Suppose that f is an irreducible polynomial in R[x]. Show that
degree f <2.
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A | Splitting fields
Suppose that K is a field, that feK[x] and that L:K is an
extension. We say that f splits over L if we can write

f=Mx—ay)...(x—a)

where a,,...,a, are in L and 1eK.

We say that L:K is a splitting field extension for f over K (or, when it is
clear what K is, that L is a splitting field for f) if, first, f splits over L and,
secondly, there is no proper subfield L of L containing K such that f splits
over L. This last condition ensures that the extension L:K is an economical
one for f.

If we can find an extension over which f splits, we can find a splitting
field:

Theorem 7.1 Suppose that L:K is an extension and that f € K[x] splits over
L as

f=Mx—ay)...(x—a,).

Then K(ay,...,a,) is a splitting field for f.
Proof. f certainly splits over K(a,,...,a,). Suppose that K(x,,...,,) 2
K’ 2K and that f splits over K"

F= A=) .. (X —aL]).

As factorization in L[x] is essentially unique, for each i we have a;=a}, for
some j, and so a;€ K'. Consequently K’ = K(«,,...,a,) and so K’ is not a
proper subfield of K(a,,:..,a,).

Corollary If L:K is a splitting field extension for feK[x] then L:K is a
finite algebraic extension.

How can we construct splitting fields? The key step is the adjunction of a
root of an irreducible polynomial.

Theorem 7.2 Supposethat f € K[x] isirreducible of degreen. Then thereisa
simple algebraic extension K(a):K such that [K(x):K]=n and flo)=0.
Proof. We must construct K(x) intrinsically, starting from K and f. Let
j:K > K[x] be the natural monomorphism, let L=K[x]/(f), and let
q=K[x] - L be the quotient map. Since f is irreducible, L is a field (by the
corollary to Theorem 3.16). Let i=gqj:i is a monomorphism of the field K
into the field L
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K = K[x]

so that (i, K, L) is an extension (remember the original definition). Now let
a=q(x)=x+(f). As x generates K[x] over K, L= K(x). Also, since g is a
ring homomorphism,

So)= flg(x))=4(f)=0.
Thus « is algebraic over K. Bearing in mind that f is irreducible over K, we
see that f must be a scalar multiple of the minimal polynomial m, of « over
K. Thus [L:K]=n, by Theorem 4 4. ‘
Note that, although f isirreducible over K, it is not irreducible over K(o):
it has a linear factor x —a. Factorization is under way, and we can now
proceed inductively.

Theorem 7.3 Suppose that feK([x]. Then there exists a splitting field
extension L:K for f, with [L:K]<n!.

Proof. We prove this by induction on n=degree f. Of course, if degree f < 1,
there is nothing to prove. Suppose that the result holds for any polynomial
of degree less than n, over any field K. Suppose that degree f=n. We
consider two cases.

Case 1. f is not irreducible over K. We can write f=gh, where degree
g=s<nand degree h =t <n. By the inductive hypothesis there is a splitting
field LK for g, with [L:K] <s!. We can write

g=AMx—ay)...(x—ay)
with a;e L and A€ K. Note that L=K(x,,...,a,).
We can now consider h as an element of L[ x]; by the inductive hypothesis
again, there is a splitting field M:L for h, with [M:L] <t! We can write
h=ux—By)...(x—p)
with ;€ M and p e L. Note that M =L(f,,..., B)=K(ay,.--, 0%, By, .-, B);
as Au is the coefficient of x" in f, Aue K. Thus M:K is a splitting field
extension for f. Further,

[M:K]=[M:LJ[L:K]<t!s!<(s+t)!=n!
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Case 2. f isirreducible over K. Then by Theorem 7.2 there exists a simple
algebraic extension K(x):K, with [K(a):K]=n, such that, over K(a),
f=x—ah
where h e K(a)[x], and degree h=n — 1. By the inductive hypothesis, there
exists a splitting field extension L:K(x) for k, with [L:K(x)] <(n—1)!. We
can write
h=p(x—pBy)...(x—=B,-1)
with B;eL, ueK(x). Note that L=K(&)(B1,.- > B 1)=K(0, B1,. s Bu—1)-
Then
f=px—a)(x—pBy)...(x=B,_1);
again, u is the coefficient of x" in £, so that y € K and f splits over L. Thus
L:K=K(o, By,..s - 1):K
is a splitting field extension for f. Finally
[L:K]<[L:K(@)][K(®):K]<(n—1)ln=n!

Observe that the proof of Theorem 7.3 is largely a matter of induction;
the field theory occurs in Theorem 7.2.

Nevertheless, Theorem 7.3 is a major achievement: we can now produce a
splitting field for any polynomial over any field. Notice that there can be
some freedom of action in Theorem 7.3 (in the way we consider factors in
the case where f'is not irreducible); there may also be other ways to produce
splitting fields: can these be essentially different? We shall answer this
important question in the next section.

Exercises

7.2 Show that f=x3—x+ lisirreducible in Z,[x]. Show thatif { isa
root of f in a splitting field extension, then { + 1 and { — 1 are also
roots. Construct a splitting field extension, and write out its
multiplication table.

7.3 Suppose that K is a field over which x" — 1 splits, and suppose that
K(1):K is a simple transcendental extension. Show that x"—t is
irreducible in K(t)[x] (Exercise 5.4). Construct a splitting field
extension for x" —t by considering another simple transcendental
extension K(s):K and a monomorphism i: K(t) — K(s) which fixes
K and sends ¢ to s".

7.2 The extension of monomorphisms

In this section, we shall show that a splitting field extension of a
polynomial is essentially unique. In the process, we shall prove some of the
most important results of the theory. As the theory develops in the
succeeding chapters, it will, I hope, become clear why these results are so
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important. Two more remarks are in order. First, algebra is not just the
study of sets with some algebraic structure, but the study of such sets and of
mappings between them which respect the structure: in this section we
begin to consider such mappings. Secondly, although the results are
important, the proofs are natural and easy: the relationship between
‘difficulty’ and ‘importance’ is a curious one.

Let us recall thatifiisa 1ring homomorphism from a field K into a field L
then iis necessarily a mondxﬂorphism, so that i is an isomorphism of K onto
i(K). Further if

f=ag+ax+---+a,x"eK[x]
then i(f) = i(ag) +ila)x + - - - +i(a,)x" €i(K)[x] < L[x]; thus i extends to a
monomorphism (which we again denote by i) from K[x] into L[x],and i is
an isomorphism of K[x] onto i(K)[x].
We begin by considering simple algebraic extensions.

Theorem 7.4 Suppose that K(x):K is a simple extension and that a is
algebraic over K, with minimal polynomial m,. Suppose that i is a
monomorphism from K into a field L and that feL. Then a necessary and
sufficient condition for there to be a monomorphism j from K(a) to L with
j@=p and j|x=i is that i(m,)(B)=0. If the condition is satisfied then j is
unique.

Proof. Necessity. This is rather trivial. If j exists then

i(m,)(B) =jlm,)(j(@)) = j(m,(x)) =j(0) =0.
Sufficiency. Suppose that the condition is satisfied. Let K'=i(K). Then
i:K—- K’ is an isomorphism, which extends to an isomorphism
i:K[x] - K'[x]. As i(m,)(#)=0, B is algebraic over K'. We now use the
evaluation maps to construct the following diagram.

L
K(%) = K[x] i K'[x] : - K'(B)
Ea q q, E B

in
n

K[x]/m,)  K'[x)/(mg)
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Here E, and E, are the evaluation maps, g and ¢’ are quotient maps and E
S g B N q q q p o«

and E; are isomorphisms.
Now i(m,) is monic, and is irreducible over K’ (since i is an isomorphism

of K[x] onto K’'[x] which sends K to K’) and i(m,)(f)=0, by hypothesis.
Consequently mg;=i(m,), and so (m,) is the kernel of ¢'i. Thus by Theorem
3.1 there exists an isomorphism

i:K[x]1/(m,) — K'[x]/(mg)
such that ¢'i=1ig. Now let

j= Eﬁi(Em) -l
jisanisomorphism of K(x) onto K'(f}), and so it isa monomorphism of K(«)
into L. Also

J(@)=EGE,)"" () = Eyig(x)
= Eq'i(x) = E5li(x))= B
and if keK
J(k)=EGIE,)~ " (k) = Eyig(k)
= Eyq'i(k) = E(i(k)) = i(k),
so that j has the properties that we are looking for.

Finally, if j is another monomorphism of K(x) with the required
properties, then the set

F={y:j0)=j'0)}
is a subfield of K(x). It contains K and «, and so F=K(«) and j is unique.
This theorem can be proved more quickly: it is not really necessary to
show that i(m,)=m;,. But this proof shows how rigidly j is determined: we
have built a strong bridge between K(x) and K'(f).
Inspection of the diagram and the proof, gives the following corollary.

Corollary 1 Suppose that K(a):K and K'(o):K' are simple extensions, and
that o is algebraic over K, o’ algebraic over K. Suppose that i:K — K' is an
isomorphism. Then there exists an isomorphism j: K(x) — K'(') with ja)=o
and jlx=iif and only if i(m,)=m,. If so, j is unique.

Corollary 2 Suppose that K(x):K is simple and that o is algebraic over K.

Suppose thati: K — L is a monomorphism,and that i(m,) has r distinct roots in

L. Then there are exactly r distinct monomorphisms j: K(x) > L with j|x=i.
We now consider splitting fields.

Theorem 7.5 Suppose that XK is a splitting field extension for a polynomial
f in K[x] and that i is a monomorphism from K into a field L. Then a
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necessary and sufficient condition for there to be a monomorphism j from Z
into L with j|=i is that i(f) splits over L.
Proof. Necessity. As f splits over X, we can write

f=Mx—0y)...(x—a,),
with 1eK,ay,...,a,eX. Then

i(f)=j(f)=iD(x—jay)) ... (x—jx,)

so that i(f) splits over L.

Sufficiency. Once zigain we argue by induction on degree f =n. The result is
true when n= 1, for then X =K, and we take j=i. Suppose that the result
holds for any splitting field extension X':K’ for any polynomial of degree
less than n over any field K’, and for any monomorphism i’ from K’ into L.
Suppose that degree f=n, and that i( f) splits over L. :

As 2:K is a splitting field extension for f over K, we can write

f=Ux—ay)...(x—a,),
with ;€ X and A€ K. a, is algebraic over K;let m be its minimal polynomial

over K. Then f=mg, and misirreducible over K. By relabelling a4, . . ., o, if
necessary, we can suppose that

m=(x—a ) (x—0ay)...(x—a,)
Now i( f) =i(m)i(g); as i(f) splits over L, i(m) must split over L too. We can
write

im=(x—py)...(x=p)
We are now in a position to apply Theorem 7.4: K(x;):K is a simple
algebraic extension, and «, has minimal polynomial m. Also i(m)(8;)=0.
There therefore exists a unique monomorphism j, from K(a, ) to L such that
Jji(ey)=B, and j, |K=i5

z L
Ja :
K(x,) - i(K)(B1)
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We now consider f as an element of K (o, )[ x]. We can write = (x—a;)h,
where heK (a,)[x], and h splits over X:

h=Ax—0o)...(x—a,).

Also Z=K(a;)(a5,.-.,a,), and so X is a splitting field for hover K(a,). As
degree h=n—1, we can apply the inductive hypothesis: there exists a
monomorphism j from X to L such that j|, ,=j;. This completes the proof.

Before we establish some corollaries, let us make three remarks. First,
like Theorem 7.4, this is an extension theorem: we extend the mapping i.
Secondly, unlike Theorem 7.4, the extension need not be unique: we could
map o, to any of 8,,..., B,. Thirdly, although the extension need not be
unique, there are obviously some limitations on the number of extensions
that there can be. This is a topic to which we shall pay much attention later
on.

Corollary 1 Suppose that i: K — K’ is an isomorphism and that feK[x].
Suppose that X:K is a splitting field extension for f, 2':K' a splitting field
extension for i(f). Then there exists an isomorphism j:X — X' such that
J |K=i'

Proof. If we apply the theorem to the mapping i, considered as a
monomorphism from K to X', it follows that there exists a monomorphism j
from X to 2’ which extends i. We can write

f=Ax—ay)...(x—a,),
with a,,...,a, in 2 and 4 in K. Then

JU) =AY —j(@)) . ... (x —jlea)),

so that, using Theorem 7.1, it follows that

z =K'(j(al)5 .- "j(an)) E](Z),

and j is onto.

Corollary 2 Suppose that f € K[x] is irreducible and that X:K is a splitting
field extension for f.If a and B are roots of f in Z, there is an automorphism
0:2 — X such that o(a)=p and o fixes K.

Proof. f is the minimal polynomial for « and f over K. By Corollary 1 of
Theorem 7.4, there is an isomorphism t:K(x) = K(f) with t(x)=f and
1(k)=k for ke K. Now X:K(a) is a splitting field extension for f over K(a),
and X:K(f) is a splitting field extension for f over K(f). The result now
follows from Corollary 1.
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Exercise

7.4 The complex numbers i\/§ and 1+i\/§ are roots of the quartic
f=x*-2x>+7x*—6x+12. Does there exist an automorphism ¢

of the splitting field extension for f over Q with o(i\/g) = 1+i\/§?

7.3 Some examples

We now consider some examples of splitting fields. First let us
consider polynomials in Q[x]. If f € @[x] then, as we saw at the beginning
of this chapter, f splits over C[x], and we can, and usually shall, consider
the splitting field of f as a subfield of C. Alternatively, we can make the
constructions of Theorem 7.2 and 7.3. Corollary 1 to Theorem 7.5 then says
that the splitting field that we obtain is essentially the same.

Example 1 f=x"-2 in Q[x] (with p a prime).

f is irreducible, by Eisenstein’s criterion, and there is one real positive
root 2'/7. f is the minimal polynomial of 2!/%, so that [Q(2}/?):Q] =p. Ifa is
any root of f in C, then (a/2!/P)P=0P/2 =1, so that a=2Pw, where w is a
root of x?—1. x?—1 is not irreducible, as

XP—1=(x—1)(P 1 +xP"24... +1).
Now x? ™! +xP~2+ ... 4 lisirreducible over Q (Exercise 5.9), so that if w is
any root of x? — 1 other than 1 then [Q(w):Q]=p—1. Themapn - w"isa
homomorphism of Z into the multiplicative group C*, with kernel pZ, and
so the complex numbers 1, w, ..., w? ! must be distinct. They are all roots
of xP—1, so that
XP—1=(x—1)x—-w)...(x—w?™1)
and Q(w):Q is a splitting field extension for x? — 1.
Now our original polynomial f splits over C(w, 2!/?) since it has roots
2P @2lp . P 12L/P,
Further any splitting field must contain 2!/7, and must also contain w =
@21/?/2Y?_ Thus Q(w,2!/7):Q is the splitting field extension for f.
What is [Q(w, 21/7):Q]? In order to answer this, consider this diagram.
C

A

21/p)
Qw) Q2177

/
\
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Here (and later, when we consider similar diagrams) rising arrows represent
inclusion mappings.
By the tower law,

[Q2'7):Q]|[Q@,27):Q] and [Q(w):Q]|[Qw,2"7):Q].
As[Q(2'/7):Q]=p and [Q(w): Q] = p — 1, this means that [Q(w, 2'/7):Q] >
p(p—1). On the other hand, if m is the minimal polynomial of 2!/7 over Q(w),
m divides x?—2 in Q(w)[x],and so

degree m=[Q(w, 2"/7): Q(w)] <p.
Thus, by the tower law,
[Qw,27):Q] = [QAw, 2'/7):Q()] [Qw): Q]
<p(p—1),

and so [Q(w,2'%): Q] =p(p—1).

This implies that degree m=p, and so x?—2 is irreducible over Q(w).

This example has many important features. It is perhaps a bit more
complicated than one might imagine. Notice that the pth roots of unity (the
roots of x? — 1) played an important réle. Notice also that we picked one of
them (other than 1): had we picked another, the result would have been the
same. (Can you formalize this, using Corollary 2 of Theorem 7.5?) Notice
also that the argument could have been simplified by appealing to Exercise
42.

Example 2 f=x°%—1in Q[x].
S factorizes as

=0~ D(x?+x+ D(x+ D(x2—x+1)
If w is a root of x2+x+ 1 then
f=(x~ 1)(x —w)(x —0?)(x+ )(x +w)x +w?)

Thus Q(w): Q is a splitting field extension for f and [Q(w):Q]=2.

Example 3 f=x®+1in Q[x].
The roots of f in Carel, iw, iw?, —i, —iw, —iw?. Thus, arguing as before,
Q(i, w):Q is the splitting field extension for f, and we have this diagram.




7.3. Some examples 69

Q) /ﬁD (i,ai\
T~ . /

Now we can take = ——%+\/§ i/2, so that w ¢ Q(i) (which consists of all
complex numbers of the form r + is, with r and s in @). Thus Q(i) # Q(w) and
both Q(i) and Q(w) are proper subfields of Q(i, w). It is now easy to conclude
that [Q(i, w): Q] =4.

We now consider examples over more general fields. (To what extent do
we use the fact that we are considering polynomials over the rationals in
Examples 1 to 3?)

Q(w)

Example 4 f=x?+ax+b in K[x].
We would like to ‘complete the square’ and write

a\?> a*—4b
()

As we shall see, this is not possible if char K=2. Let us suppose that
char K #2. Then 2= 1+ 1isa non-zero element of K, as are 4,4 and 4. (Thus
in Z5,2=4 and 1=4=1)

In this case we can complete the square. We therefore consider the
polynomial

g=x2—yu, where u=(a’>—4b)/4.

g splits over K if and only if there is an element v of K such that v2 = y; in this
case g=(x—v)(x+v) and

f=<x+‘—21—v>(x+g+v>

splits over K. If g is irreducible, there is a splitting field extension L:K of
degree 2. In this case g =(x — v)(x + v), where v is an element of L not in K.
Thus L= K(v). Since once again

f=(x+;—v)(x+g+v>

K(v):K is a splitting field extension for f.

To sum up: either x has a square root in K, in which case f splits over K,
or we obtain a splitting field by adjoining a square root of u.

Note that, as a special case, C = R(i) is a splitting field for x2+ 1 over R.
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There remains the case where char K =2. Let us restrict attention to the
case where K=7,. As Z, has only two elements, there are only four monic
quadratic polynomials:

x?=x.x; x*+x=x(x+1); x*>+1=(x+1% x2+x+1
The first three split over Z,, but f=x?+x+1 is irreducible, since
f0)= f(1)= 1. By Theorem 7.3, there exists a splitting field extension L:Z,
for f and [L:Z,]=2. Thus L has four elements, 0, 1, « and f say. The
element o + lisnotin Z,,and so f=a+ 1. Thus a + f= 1. The element «f is
not zero (since L is a field) and cannot be a or f§: thus af = 1. Consequently
f=x*+x+1=(x—a)(x—p)
and o and f are the roots of f. Thus
a’=a+1=B and P*=P+1=a
so L is not obtained by adjoining a square root.

Note though that x3—1=(x— 1)(x>+x+ 1) so that L:Z, is a splitting

field for x>*—1; «®=B3=1, and so L is obtained by adjoining cube roots.

Similar phenomena occur whenever we deal with finite fields. We shall
consider these in more detail in Chapter 12.

Exercises

7.5 Suppose that M:L and L:K are extensions, and that aeM is
algebraic over K. Does [L(a):L] always divide [K(x):K]?

7.6 Write down all monic cubic polynomials in Z,[x], factorize them
completely and construct a splitting field for each of them. Which
of these fields are isomorphic?

7.7 Find a splitting field extension K:Q for each of the following
polynomials over Q:x*—5x2+6, x*+5x2+6, x* — 5. In each case
determine the degree [K:Q] and find « such that K =Q(x).

7.8 Find a splitting field extension K:Q for each of the following
polynomials over Q:x*+ 1, x* 44, (x*+ D)(x* +4), (x* — 1)(x* +4).
In each case determine the degree [K:Q] and find « such that
K=0Q(a).

7.9 Suppose that L:K is a splitting field extension for a polynomial of
degree n. Show that [L:K] divides n!

7.10 Find a splitting field extension for x*—5 over Z,,Z,, and Z, ;.
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The algebraic closure of a field

8.1 Introduction

As we observed at the beginning of the preceding chapter, if
f e Q[x] we can consider f as an element of C[x], and then f splits over C.
We therefore have the comforting conclusion that, whenever f € Q[x], we
can find a splitting field extension for f which is a subfield of the fixed
field C.

In this chapter we shall show that a similar phenomenon occurs for any
field K. We must make some definitions. A field L is said to be algebraically
closed if every f in L[x] splits over L. Thus the ‘fundamental theorem of
algebra’ states that C is algebraically closed. An extension L:K is called an
algebraic closure of K if L:K is algebraic and L is algebraically closed. Note
that C:Q is not an algebraic closure of @ since C:Q is not algebraic
(Exercise 4.7).

The next theorem  gives two useful characterizations of an algebraic
closure:

Theorem 8.1 Suppose that L:K is an extension. The following are
equivalent:

(i) L:K is an algebraic closure of K.
(i) L:K is algebraic, and every irreducible f in K[x] splits over L.
(i) L:K is algebraic, and if L:L is algebraic then L=L.
Proof. Clearly (i) implies (ii). Suppose that (ii) holds and that L:L is
algebraic. Then L:K is also algebraic (Theorem 4.7). Suppose that o' e L.
Let m be the minimal polynomial of &’ over K. Then m is irreducible and so,
by hypothesis, m splits over L:

m=(x—24;)..(x—4,)
As m(«')=0, o' = 4; for some j, and so o’ € L. Thus L=L and (iii) holds.
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Finally suppose that (iii) holds, and that f € L[x]. By Theorem 7.3, thereis a
splitting field extension L for f over L. L: L is algebraic, by the corollary to
Theorem 7.1 and so, by hypothesis, ' = L. Thus f splits over L, and so L is
algebraically closed. Consequently L:K is an algebraic closure of K.

Corollary Suppose that L:K is an extension and that L is algebraically
closed. Let L, be the field of elements of L which are algebraic over K. Then
L,:K is an algebraic closure of K.

In particular, if A is the field of complex numbers which are algebraic
over Q, then 4:Q is an algebraic closure for Q.

82 The existence of an algebraic closure
We now turn to the fundamental theorem concerning algebraic
closures.

Theorem 8.2 If K is a field, there exists an algebraic closure L:K.

The generality of this statement suggests that we may need to use the
axiom of choice, and the maximal nature of an algebraic closure revealed by
Theorem 8.1 reinforces this belief. It is, however, necessary to proceed with
some care. Let us begin by giving a fallacious argument.

Partially order the algebraic extensions M:K by saying that
M, :K>M,:Kif M, is a subfield of M,. If € is a chain of extensions M :K,
let N=|){M:M:K e%}.1fa, fe N, there exists M :K in € such that« and
arein M. Defineaf,a + fand o ~! (if a 2 0) by the operations in M. This does
not depend on M, and so N is a field, and N:K.Ifa e N,z € M for some M,
and so a is algebraic over K. Thus N:K is an upper bound for €. By Zorn’s
lemma, there is a maximal algebraic extension, and by Theorem 8.1, this is
an algebraic closure.

What is wrong with this argument? The error comes at the very
beginning, when we try to compare extensions. Recall that an extension is
really a triple (i, K, M), where i is a monomorphism from K into M. Thus in
general we cannot compare extensions in the way that is suggested.

Nevertheless, the fallacious argument has some virtue, and it is possible,
by considering fields which, as sets, are subsets of a sufficiently large fixed
set, to produce a correct argument along the lines which the fallacious
argument suggests. Exercises 8.1-8.3 show one way in which this can be
done. We shall instead give a more ‘ring-theoretic’ argument, which uses the
axiom of choice by appealing to Theorem 3.14.

We consider a ring of polynomials in very many variables. If f is a non-
constant monic polynomial in K[x] of degree n, then f has at most n roots
in a splitting field extension: we introduce an indeterminate to correspond
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to each of these possible roots. Let U be the set of all pairs (f, j), where fisa
non-constant monic polynomial in K[x] and 1 <j < degree f. Foreach(f, j)
in U, weintroduce an indeterminate x ( f), and consider the polynomial ring
K[X ] of polynomials with coefficients in K and with indeterminates

Xy={x{):(f,))e U}
Now suppose that f is a non-constant monic polynomial in K[x]. We
can write
f=xn _al(f)xn-_l +- +(_ 1)"(,1”(f)
(notice that we have not written monic polynomials in this form before: as

we shall see, this can be a very useful form to use). Let g( f) be the element of
K[X,1[x] that has x,(f),..., x,(f) as roots:

4(f)= n (x—x,(f)

=x"=s; (/"1 + -+ (= D5, (),
where
siN= %Y x,(N...x(f)eK[X,]
il < e <ij
is the jth elementary symmetric polynomial in x,(f),.. ., x,(f).
The idea of the proofis to identify f and g(f), and to exploit the fact that
g(f) splits in K[ X ,][x]. With this in mind, we set
t{(f)=sdf)—alf)
for 1<i<n. Let I be the ideal in K[ X ] generated by all the elements t,(f)
as f and i vary. The main step in the proof is to show that I is a proper ideal
in K[X ,]. For this, it is sufficient to show that 1¢I; in other words to show
that it is not possible to find ry,...,ry iIn K[X,] and elements

t,(fi)s s, (fy) such that
L=ryty () + -ty (f):

Suppose that such an expression were to exist. By Theorem 7.3, there
exists a splitting field L:K for the polynomial h=f] ... fy. Then each f,
splits over L; we can write

fi=(x—oy (k). .. (x —a,, (k)
where n, =degree f,. Note that
aj(fk)z. Z ) ail(k) e “.',-(k)-

We now consider the evaluation map E from K[ X ;] to L which sends x( f;)
to ak) for 1<i<n, and 1<k<N, and which sends all the other
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indeterminates to 0. Then E(si(f)))=ayf;), and so it follows from the
definition of t(f) that

Et(f)=0 for 1<i<n, 1<k<N,
so that

1=E(1)= E(r)E(t;,(f1) + - - + E(ry) E(t; ( 1) =0,
This gives the contradiction that we are looking for.

Since I is a proper ideal of K[ X /], there exists a maximal proper ideal J

of K[ X ,] which contains I, by Theorem 3.14. (This is where we use the
axiom of choice.) By Theorem 3.16, K[ X ]/J is a field, M say. We now let

Jj=gqi, where i is the natural monomorphism from K into K[ X ], and g is
the quotient map from K[X ] onto M:

K 5 K[X,]5 M.

Then (j, K, M) is an extension of K. Let us set B(f)=q(x,(f)), for all
u=(f,j)eU.
Now suppose that
f=xX"=a, (" 4+ (= ()
is a non-constant monic polynomial in K[x]. Then
JN=x"=jla, (fPx""1 + -+ +(= 1)j(a( /)
is the corresponding polynomial in M[x]. But
J@ad ) =q(ila())=a(s( ),
since s(f) —ia () =t(f) el = J. Thus
J=x"=qs (M Nx" "1+ +(=1)q(s,(f)
=q(x" =5, (/)" + -+ (= 1)"s,(f))
=q((x —x; (/N —=x5(f)). .. (x =x,(/))
=(x—=B()...(x=BL1)
and j(f) splits over M. Further, each §,(f) is algebraic over j(K) (since it is a
root of j(f)) and the f,(f) generate M over K: thus M:K is algebraic, by

Corollary 2 to Theorem 4.6. Consequently (j, K, M) is an algebraic closure
of K.

Exercises

8.1 (i) Suppose that U is a non-empty set, and that P(U) is the set of
subsets of U. Show that if V< U and f:V— P(U) is a mapping,
then f is not onto. (Consider {x:x eV, x¢ f(x)}.)

(i) Suppose that U is a non-empty set and that Ve WcU.
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Show that if f:V — P(U) is one—one then there exists a one—one
map g: W— P(U) such that g|,= f. (Use Zorn’s lemma.)
8.2 Suppose that K is a field. Let U=K[x]x Z*.

(i) Show that if (k, K, L) is an algebraic extension, then there
exists a one—one mapping of L into U. (Use Zorn’s lemma.)

(i) Suppose that (k, K, L) and (I, L, M) are algebraic extensions.
Show that if f:L— P(U) is one—one then there exists a one-one
map ¢g: M — P(U) such that f=gl

8.3 Suppose that K is a field. Let U=K[x]x Z*.

(i) If e €K, let j(o)={(x —a, 1)}. Show that j: K — P(U) is one—
one, and that j(K) can be given the structure of a field in such a way
that j is a field isomorphism.

(ii) Let & be the set of triples (S, +,.) where

(a) j(K)= S < P(U)
(b) (S, +,.) is a field, F(S) say,
(©) (i, j(K), F(S)) is an algebraic extension (here i is the inclusion
mapping).
Define a partial order on # by saying that (Sy, +4,.1) <(S2, +2,.2)
if §;, =8, and (i, F(S,), F(S,)) is an extension (again, i is the
inclusion mapping). Show that under this order, # has a maximal
element (Zorn’s lemma).

(iii) Use Theorem 7.2 or 7.3 to show that if (S, +, .) is a maximal
element of # then (j, K, F(S)) is an algebraic closure for K. (Here j
is considered as a mapping of K into F(S).)

83 The uniqueness of an algebraic closure
We now consider problems of uniqueness. First we establish an
extension theorem: this uses Zorn’s lemma in a very standard way.

Theorem 8.3 Suppose that i:K,; — K, is a monomorphism, that L:K, is
algebraic and that K, is algebraically closed. Then there exists a
monomorphism j:L — K, such that j| =i.

Proof. Let S denote all pairs (M, 6), where M is a subfield of L containing
K;,and 6 is a monomorphism from M into K, such that 6|, =i. Partially
order S by setting (M,,0,)<(M,,0,) if M, =M, and 0,|,, =0,. If € is a
chain in S, let N={){M:(M,60)e%}. If neN, then neM for some
(M.,0)e¥. Set ¢p(n)=0(n). It is now straightforward to verify that ¢ is well
defined, that ¢:N — K, is a monomorphism and that (N, ¢) is an upper
bound for €. Thus, by Zorn’s lemma, S has a maximal element (M, 6). We
must show that M=L.
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If not, there exists a € L\M. « is algebraic over M: let m be its minimal
polynomial over M. Then @(m) splits over K,, since K, is algebraically
closed. Let

Om)=(x—By)...(x—B)
Then 6(m)(8,)=0, and so by Theorem 7.4 there exists a monomorphism
6,:M(x) - K, with 6, |, = 6. This contradicts the maximality of (M, 6).
We are now in a position to show that an algebraic closure is essentially
unique.

Theorem 8.4 Suppose that (i;,K,L,) and (i,,K,L,) are two algebraic
closures for K. Then there exists an isomorphism j: L, — L, such that i, =ji,.
Proof. By Theorem 8.3 there exists a monomorphism j:L;—L, such that

12=]11'

J
L, L,
K

We now use Theorem 8.1. If f is irreducible over K[ x], i, (f) splits over L,
and so i,(f) splits over j(L,). As (i,, K, j(L,)) is algebraic, (i,, K, j(L,)) is an
algebraic closure for K. Now L,:j(L,) is algebraic, as (i,, K, L,) is, and so
L,=j(L,), by Theorem 8.1 (iii).

In future, if K is any field, we shall denote by K : K any algebraic closure of
K.

Exercises

8.4 What is the algebraic closure of Q (as a subfield of C)?
8.5 Show that an algebraically closed field must be infinite.

8.6 Suppose that K(x):K is a simple extension and that « is
transcendental over K. Show that K(x) is not algebraically closed.

8.7 Suppose that K is a countable field. Show how to construct an
algebraic closure, by successively constructing splitting fields of the
(countably many) polynomials in K[x]. Is your construction less
fallacious than the ‘fallacious proof’ of Theorem 8.2?

8.8 Suppose that L:K is algebraic. In what sense is it true that L= K?
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84 Conclusions
We have now achieved what we set out to do. Some comments are
in order. First, the proof of Theorem 8.2 is quite difficult. More to the point,
it is quite different from the very special construction of the complex field C.
Here, the hard work is constructing the real number field R from the
rational field Q. C:R is then a splitting field extension for the polynomial
x2+ 1, which is irreducible over R. It is then remarkably the case that all
polynomials over R split over C. The complex field is a very special one!
Secondly, the proof uses the axiom of choice in an essential way. This
suggests that the theorem should only be used when it is necessary to do so.
Thirdly, the existence of an algebraic closure, and the extension theorem
(Theorem 8.3) provide a useful framework in which to work. If one uses this,
the theory can be developed more simply in a few places. But the use of the
axiom of choice seems too big a price to pay: for this reason we shall not use
algebraic closures in the development of the theory.
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Normal extensions

9.1 Basic properties
In this chapter and the next we consider two important properties
that an extension may or may not have. We begin with normality.

An extension L:K is said to be normal if it is algebraic and whenever f is
an irreducible polynomial in K[x] then either f splits over L or f has no
roots in L. Clearly an algebraic extension L:K is normal if and only if the
minimal polynomial over K of each element of L splits over L.

The word ‘normal’ is one of the most overworked words in mathematical
terminology (normal subgroups, normal topological spaces,...). We shall
see in due course that this is a good use of the word.

In order to characterize normality, we need to extend the definition of a
splitting field. Suppose that K is a field, and that S is a subset of K[x]. We
say that an extension L of K is a splitting field extension for S ifeach fin S
splits over L,and if L2 L 2K and each f in S splits over L, then L'=L.

If Sis a finite set { f},. .., f,} then L:K is a splitting field extension for S if
and only if it is a splitting field extension for g=f; ... f,; thus the new
definition is only of interest if S is infinite.

Theorem 9.1 An extension L:K is normal if and only if it is a splitting field
extension for some S < K[x].
Proof. Suppose first that L:K is normal. L:K is algebraic:let S={m,:a € L}
be the set of minimal polynomials over K of elements of L. By hypothesis,
each f in S splits over L, and clearly S splits over no proper subfield of L.
Conversely suppose that L:K is a splitting field extension for S. Let 4
denote the set of roots in L of polynomials in S. Then clearly L = K(A), and
so L:K is algebraic, by Corollary 2 to Theorem 4.6.
Suppose that € L and that m is its minimal polynomial over K. We must
show that m splits over L. First we reduce the problem to one concerning
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finite extensions. As feK(A), there exist ¢,,...,a, in A such that
peK(ay,...,a,). There exist f,,..., f, in S such that «; is a root of f;, for
1<i<n. Each f; splits over L. Let R be the set of rootsof g=f] ... f,. Then
K(R):K is a splitting field extension for g and f € K(R). We now consider m
as an element of K(R)[x] and construct a splitting field extension H:K(R)
for m. Let y be another root of m in H. We must show that in fact y € K(R).

We have the following diagram, where upward pointing arrows denote
inclusions:

K(R) K(R,y)

T I
K(ﬁ)\ / K(y)

K

m is the minimum polynomial of both f and y over K, so that [K(f):K]=
[K(y):K]=degree m. Also, by the corollary to Theorem 7.4, there is an
isomorphism 1 of K(B) onto K(y) which sends f to y and which fixes K. Ast
fixes K, 1(g)=g.

Now K(R):K(f) is a splitting field extension for g over K(f), and
K(R,y):K(y) is a splitting field extension for 7(g)=g over K(y), so that by
Corollary 1 to Theorem 7.5 there is an isomorphism ¢ of K(R) onto K(R, y)
such that a| k@ =T1. Thismeans that [K(R):K(8)] = [K(R, 7):K(y)],and so by
the tower law

[K(R):K]=[K(R):K(B)][K(B):K]
=[K(R,y):K(y)][K(y):K]
=[K(R,y):K].
But K(R)=K(R,y), and so we must have that K(R)=K(R,y).

Consequently, y € K(R).
The case of finite extensions is particularly important:

Corollary 1 A finite extension L:K is normal if and onlyif L:K is a splitting
field extension for some g€ K[x].

Forif L:K is normal and finite, and «,, . . ., &, is a basis for L over K, then
L:K is a splitting field extension for g=m, m, ...m

(-
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Let L=K(«,...,a,), let m, be the minimal polynomial of «; over K, and
let g=m, ... m, Then L:K is normal if and only if L:K is a splitting field
extension for g.

Suppose that L:K is algebraic. An extension F:L is a normal closure for
L:K if F:K is normal, and if F:M:L is a tower and M:K is normal, then
M=F.

Corollary 2 If L:K is finite, it has a finite normal closure F:L.

With the same notation as in Corollary 1, let F:L be a splitting field
extension for g over L. Then F:K is a splitting field extension for g over K so
that F:K is normal. If F:M:L is a tower and M:K is normal, then each m,
splits over M, and so g splits over M; therefore M=F.

Corollary 3 If L:K is normal and M is an intermediate field then L: M is
normal.

For there exists S = K[x] such that L: K is a splitting field extension for S.
If we consider S as a subset of M[x], L: M is a splitting field extension for S.

Exercises

9.1 Show that every algebraic extension has a normal closure.

9.2 Suppose that L:K is algebraic. Show that there is a greatest
intermediate field M for which M:K is normal.

9.3 Suppose that L:K and that M, and M, are intermediate fields.
Show that if M,:K and M,:K are normal then so are
KM ,,M,):K and M, "M ,:K.

9.2 Monomorphisms and automorphisms
We have just seen that if L:K is normal and M is an intermediate
field then L:M is normal. On the other hand there is no reason why M:K
should be normal. For example if @ is a complex cube root of 1 then
Q(2'/3, w):Q is normal, since it is the splitting field for f=x>—2, while
Q(2'/%):Q is not, since f is irreducible and has one root in @(2'/3) but does
not split over Q(2!/3).
It is important to be able to recognize when M :K is normal. In the next
theorem we give necessary and sufficient conditions for this, for finite

extensions: in fact the finiteness condition is not necessary (Exercises 9.6
and 9.7).
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Theorem 9.2 Suppose that L:K is a finite normal extension and that M is an
intermediate field. The following are equivalent:
(1) M:K is normal;

(i) if o is an automorphism of L which fixes K then (M) < M;

(iti) if o is an automorphsim of L which fixes K then ¢(M)=M.
Proof. Suppose first that M :K is normal, and that o is an automorphism of
L which fixes K. Suppose that « € M and let m be the minimal polynomial
for a over K. Then m(o(a))=o(m(x)) =0, so that o(«) is a root of m. As m
splits over M, a(x) e M, and so a(M) = M. Thus (i) implies (ii).

Since [o(M):K]=[M:K] it is clear that (ii) implies (iii).

Suppose now that (iii) holds. As L:K is normal, L:K is the splitting field
extension for some g € K[x], by Corollary 1 to Theorem 9.1. Suppose that
o€ M. Let m be the minimal polynomial for « over K. As L:K is normal, m
splits over L. We must show that m splits over M: that is, that all the roots of
m are in M. Let § be any root of m in L. By Theorem 7.4, there exists a
monomorphism j from K(a) to K(f), fixing K, such that j(x) = p. Since j fixes
K,j(g)=g.Now L:K(«)and L:K(B) are splitting field extensions for j(g)=g.
By Corollary 1 to Theorem 7.5, there is an isomorphism ¢:L—L which
extendsj. As o fixes K, 6(M)= M. In particular, this means that f = o(a)eM.

Exercises

9.4 Supposethat N:L and N':L are two normal closures of L.: K. Show
that there is an isomorphism j of N onto N’ such that j()=1 for
leL.

9.5 Suppose that L:K is a finite normal extension and that f is an
irreducible polynomial in K[x]. Suppose that g and h are
irreducible monic factors of f in L[x]. Show that there is an
automorphism ¢ of L which fixes K such that ao(g)=h.

9.6 Suppose that L:K is algebraic. Show that the following are
equivalent:
(1) L:K is normal;
(i) if j is any monomorphism from L to L which fixes K then
JneL;
(iii) if j is any monomorphism from L to L which fixes K then
Ji)=L.
9.7 Show that the condition that L:K is finite can be dropped from
Theorem 9.2. (Use the previous exercise and Theorem 8.3.)
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Separability

10.1 Basic ideas

The second important property that an extension may or may not
have is separability. We have seen that normality is a rather special
property. Separability is different: we shall have to work quite hard to
produce an extension which is not separable. Lack of separability leads to
technical difficulties: when the time comes, we shall avoid these by making
appropriate assumptions.

Separability involves several definitions. Suppose first that f is an
irreducible polynomial of degree n in K[x] and that L:K is a splitting field
extension for f. We say that f is separable (over K) if f has n distinct roots in
L. Suppose next that f is an arbitrary polynomial in K[x]. We say that f is
separable (over K) if each of its irreducible factors is separable.

Suppose that L:K is an extension and that aeL. We say that o is
separable (over K) if it is algebraic over K and its minimal polynomial over
K is separable, and say that L:K is separable if each a in L is separable over
K.

Theorem 10.1 Suppose that L:K is separable and that M is an intermediate
field. Then L:M and M :K are separable.
Proof. It is obvious that M:K is separable.

Suppose that a € L. Let m, be its minimal polynomial over M, m, its
minimal polynomial over K. Let N:M be a splitting field extension for m,,
considered as an element of M[x]. Since m, is separable over K, we can
write

my=(x—o)...(x—a,)
where a4, ..., «, are distinct elements of N. But m, |m, in M[x], and so in
N[x]

my=(x—a)...(x—o)
for some 1<i, <--- <i;<r. Thus m, is separable.
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10.2 Monomorphisms and automorphisms
We have already seen that counting dimension leads to some
remarkably strong results. We shall find that counting monomorphisms
and automorphisms is equally useful. With this in mind, the results in this
section suggest why separability is important.
First we consider simple extensions.

Theorem 10.2 Suppose that K(2):K is a simple algebraic extension of degree
d. Suppose that j: K — L is a monomorphism. If « is separable over K and if
j(m,) splits over L then there are exactly d monomorphisms from K(x) to L
extending j; otherwise there are fewer than d such monomorphisms.

Proof. By Corollary 2 to Theorem 7.4, there are r such extensions, where r is
the number of distinct roots of j(m,) in L. Now d =degree m,=degree j(m,)
(Theorem 4.4), so that r <d,and r=d if and only if j(m,) splits into d distinct
linear factors: that is, if and only if j(m,) is separable over j(K) and j(m,)
splits over L. Clearly « is separable over K if and only if j(m,) is separable
over j(K), and so the result is proved.

We now consider the general case

Theorem 10.3 Suppose that K':K is a finite extension of degree d, and that
Jj:K — Lis amonomorphism. If K':K is separable and j(m,) splits over L for
each o in K' then there are exactly d monomorphisms from K' to L extending
J; otherwise, there are fewer than d such monomorphisms.

Proof. We prove this by induction on d. It is trivially true when d=1.
Suppose that it is true for all extensions of degree less than d, and that
[K':K]=d.

Suppose first that the conditions are satisfied. Let x € K'\ K. By Theorem
10.2 there are exactly [K(x): K] monomorphisms from K(x) to L extending
J. Let k be one of these. We apply the inductive hypothesis to K': K(a). First,
[K’:K(x)] <d. Secondly K':K(e) is separable, by Theorem 10.1. If e K', let
my be the minimal polynomial for g over K and let ng be the minimal
polynomial for § over K(x). Then n; divides m; in K(2)[x] and so k(n,)
divides k(m,) in L[x]. But k(my) splits over L[x], and so k(n,) splits over
L[x]. Thus the conditions are satisfied, and so k can be extended in
[K’:K(x)] ways. It therefore follows from the tower law that j can be
extended in d ways.

Suppose next that the conditions are not satisfied. Then there exists « in
K’ such that j(m,) has fewer than [ K (x):K] distinct roots in L, and so j can
be extended in fewer than [K(«): K] ways to a monomorphism from K(x) to
L, by Corollary 2 to Theorem 7.4. Each of these extensions can be extended
to a monomorphism from K’ to L in at most [K':K(x)] ways, by the
inductive hypothesis, and so there are fewer than d extensions.
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Corollary 1 Suppose that L:K is finite and that L=K(ay,...,a,). If o; is
separable over K(oy,...,0;_,) for 1<i<r, then L:K is separable.

Proof. Let F:L be a normal closure for L:K. Let K,=K, and let K;=
K(ay,...,2)=K;_;(x) for 1<j<r. We assert that there are [K;:K]
monomorphisms from K ; into F which fix K. The result is trivially true for
j=0. Assume that it is true for j— 1, and that i is a monomorphism from
K;_, to F which fixes K. Let n; be the minimal polynomial for o;over K; _,,
and let m; be the minimal polynomial for «; over K. Then nj|m ;in K [x],
and so i(n)|i(m,) in i(K;_,)[ x]. But i(m;)=m;, and m; splits in F[x]; so that
i(n;) splits in F[x]. As a; is separable over K;_,, i can be extended in
[K;:K;_,] ways to a monomorphism from K to F, by Theorem 10.2. The
assertion therefore follows inductively, using the tower law. But it now
follows from Theorem 10.3 that K;:K is separable, and so, in particular,

L:K is separable.

Corollary 2 Suppose that L:K is finite and that L=K(ay,...,o,). If each a;
is separable over K then L:K is separable.
This follows from Corollary 1 and Theorem 10.1.

Corollary 3 Suppose that f € K[x] is separable over K and that L:K is a
splitting field extension for f. Then L:K is separable.
Apply Corollary 2 to the roots of fin L.

Corollary 4 Suppose that L:K is finite, and that L:M:K is a tower. If L:M
and M:K are separable, then so is L:K.

Write M=K(ay,...,,), L=M(a,,,,...,a;), and use Corollary 1 and
Theorem 10.1.

Exercise

10.1 Suppose that L:K is finite and that L:L is a normal closure for
L:K. Show that L:K is separable if and only if there are exactly
[L:K] monomorphisms of L into L which fix K.

10.3  Galois extensions
An extension which is finite, normal and separable is called a
Galois extension.
If we apply Theorem 10.3 to the identity on K, we obtain the following.

Theorem 10.4 Suppose that L:K is finite. If L:K is a Galois extension, there
are [L:K] automorphisms of L which fix K; otherwise there are fewer than
[L:K] such automorphisms.
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This theorem is the real starting point for Galois theory. We shall
continue with this in the next chapter; in the rest of this chapter we shall
study separability further.

104 Differentiation

Suppose that f is a non-zero element of K[x] and that L:K is a
splitting field extension for f. We say that f has a repeated root in L if there
exists « € L and k> 1 such that

(x—a)|f in K[x].

An irreducible polynomial in K[x] is not separable if and only if it has a
repeated root in a splitting field. It is therefore important to be able to
recognize when a polynomial has a repeated root.

Suppose that f is a non-zero polynomial in C[x], and that « is a root of f.
How do we tell if « is a repeated root? We differentiate: « is a repeated root if
and only if f’(@)=0. Although you have no doubt learnt about
differentiation in analysis, the differential operator has strong algebraic
properties —in particular, (fg) = f'g + fg’' —and we can define the derivative
of a polynomial in a purely algebraic way.

Suppose that

f=ap+a;x+---+ax"eK[x].
We define the derivative
Df=a, +2a,x+---+na,x" L.
Here, as usual, ja;=a;+--- +a; (j times).
D is a mapping from K[x] to K[x]. As
D(f+g)=Df+Dg,  D(of)=aDy),
D is a K-linear mapping. Also
D(x"x") = (m+n)x™ "~ =mx™ " X"+ nx"x" "1 = (Dx™)x" + x"(Dx"),
and so, by linearity,

D(fg)=(Df)g + f(Dg).
Notice also that, if K has non-zero characteristic p, then
Dx?=px?~1=0.

Differentiation provides a test for repeated roots, just as in the case of C[x].

Theorem 10.5 Suppose that f is a non-zero element of K[x] and that L:K is
a splitting field for f. The following are equivalent:
(i) f has a repeated root in L;
(ii) there exists a in L for which flo)=(Df)(x)=0;
(iii) there exists m in K[x], with degree m> 1, such that m| f and m|Df.
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Proof. Suppose that f has a repeated root a in L. Then f=(x —a)*g, where
k>1and geL[x]. Thus

Df =k(x—a)* " 'g+(x —a)*Dyg,
and so f(o)=Df(«)=0. Thus (i) implies (ii).

Suppose that (ii) holds. Let m be the minimal polynomial of « over K.
Then m|f and m|Df, and so (iii) holds.

Suppose that (iii) holds. We can write f =mh, with hin K[x]. As f splits
over L,so does m. Let a be a root of min L. We can write f =(x —a)g, with g
in L{x]. Then

Df =g+ (x—a)Dg.
But (x —)|Df in L[x], since m|Df, and so (x —a)|q. Thus (x —«)?| f, and f
has a repeated root in L.

This theorem enables us to characterize irreducible polynomials which
are not separable.

Theorem 10.6 Suppose that f € K[x] is irreducible. Then f is not separable

if and only if char K=p>0 and f has the form
f=ag+a;x?+ax*"+--- +a,x".

Proof. If f is not separable, there exists m in K[x], with degree m> 1, such

that m| f and m|Df. As f isirreducible, f and mare associates. Thus f|Df; as

degree Df <degree f, it follows that Df=0. This can only happen if

char K#0 and f has the form given in the theorem.

Conversely, if the conditions are satisfied, Df =0 and we can take f=m
in Theorem 10.5(iii).

Corollary If char K=0, all polynomials in K[x] are separable.
Theorem 10.6 raises the question: if char K=p>0, and f has the form

f=ap+a;xP+---+a,x",
when is f irreducible in K[x]? Before answering this, we introduce an idea
which has many applications.

Exercises

10.2 Suppose that fis a polynomial in K[ x] of degree n and that either
char K=0 or char K >n. Suppose that «a € K. Establish Taylor's
Sormula:

D*(w)

o (x—o)*+---+

J = f0)+Dflo)(x —a) +

D'/ (x—o)".
n!

-

TRT——
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10.3 Suppose that f is a polynomial in K[x] of degree n and that either
char K =0orchar K >n. Show that a is a root of exact multiplicity
r(<n) if and only if

fle)=Dfle)=---=D""f{a) and D"fla)#0.

10.5 The Frobenius monomorphism

Theorem 10.6 shows that if we are to find an inseparable
polynomial we must consider fields of non-zero characteristic. The next
result is particularly useful for dealing with these.

Theorem 10.7 Suppose that char K=p#0. The map ¢()=af is a
monomorphism of K into itself. The set of elements which remain fixed under
¢ is exactly the prime subfield.

Proof. Of course ¢(of)= Pp(a)(B) and ¢(1)= 1. As usual,ifne Z* and e K
let na=a+--- +a (n times). The standard inductive argument shows that
the binomial theorem holds in K, and so

(a+B)P=aP+(Il))a"“ﬁ+---+<pil>cxﬁ”“+ﬁ".

But, as p is prime, p|(?) for 1<r<p, and so

(’r’)av-fﬂ'=o.

Thus (x + f)?=a” + f? and ¢ is a monomorphism. The set of elements fixed
by ¢ is a subfield, and therefore contains the prime subfield. But « is fixed by
¢ if and only if a is a root of x? — x, and so at most p elements are fixed by ¢.
Since the prime subfield has p elements, it must be the set of elements fixed
by ¢.

The mapping ¢ is called the Frobenius monomorphism.

Corollary If char K=p#0 and K is algebraic over its prime subfield, then
the Frobenius monomorphism ¢ is an automorphism.
This is an immediate consequence of Theorem 4.8.

Exercises

10.4 Suppose that pis a prime number. By factorizing x?~! — 1 over Z,,,
shows that (p—1)!+ 1=0(mod p) (Wilson’s theorem).

10.5 Suppose that p is a prime number of the form 4n+ 1. Show that
there exists k such that k2+ 1=0(mod p). Show that p is not a
prime in Z +iZ and show that there exist u and v in Z such that
u*+v2=p.
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10.6 Suppose fhat pisaprime number of the form 4n + 3. Show that pis
a prime in Z +iZ.

106  Inseparable polynomials
Suppose that
f=apg+a;x"+---+a,x"?
is in K[x]. We shall write f(x)=g(x*), where
g=ag+a;x+---+a,x"
This is a slight abuse of terminology, which does not lead to any difficulties.

Theorem 10.8 Suppose that char K =p>0 and that
F) =90 =ag+a,x7+ -+ x77 :
is monic; then f is irreducible in K[x] if and only if g is irreducible in K[x],
and not all of the coefficients a; are pth powers of elements of K.
Proof. If g factorizes as g =g, g,, then f factorizes as f(x)=g,(x?)g,(x*): thus
if f is irreducible, so is g.
Suppose next that each g;is a pth power of an element of K: that is, a; = b},
for b, in K. Then
S=bf+bixP+ .. 4 bEx"?
=(bo+byx -+ +bx')
and so f factorizes. Thus if f is irreducible, not all the a; can be pth powers
of elements of K.
Conversely, suppose that f factorizes. We must show that either g
factorizes or that all the g, are pth powers of elements of K. We can write f
as a product of irreducible factors:

f=fu. . fr
where the f; are monic and irreducible in K[x], f; and f; are relatively
prime, for i#j, and n,; +--- +n,> 1. We have to consider two cases.
First suppose that r> 1. Then we can write f=h,h,, with h, and h,
relatively prime (take h, = f71).
There exist 4, and 4, in K[x] such that
Avhy+Ah,=1.
Further,
0=Df=(Dh,)h,+h,(Dh,).
Eliminating h,, we find that
Dh, =4,h,(Dh,)—A,h(Dh;)
and so h, | Dh,. As degree Dh, <degree h,, we must have Dh, =0. Similarly
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Dh,=0. Thus we can write
hy(X)=co+c xP+ -+ xP=j,(xP),
hy(x)=dy+dx*+ - - +d,x"?=j,(xP)
and g factorizes as g=j, j,.
Secondly, suppose that r=1. Then f=f", where f; is irreducible, and
n> 1. Again there are two cases to consider. If p/n, we can write f=h?. If
h=co+c;x+---+cx°
then, applying the Frobenius monomorphism,
S=hP=cf+cixP+ - +cPxP
so that all the q; are pth powers. If p does not divide n,
0=Df =n(Df)f}*
and so Df, =0. Thus we can write
SixX)=do+d x?+-- - +dx'""=g,(x?)
and g=(g,)"

Corollary If char K=p#0 and K is algebraic over its prime subfield, then
all polynomials in K[x] are separable.

Proof. As the Frobenius monomorphism maps K onto K, every element of
K is a pth power. If f is irreducible, f can therefore not be of the form
fix)=g(x?), and so f must be separable, by Theorem 10.6.

Bearing in mind the corollary to Theorem 10.6, this means that if we are
to find an inseparable polynomial we must consider fields K of non-zero
characteristic which are not algebraic over their prime subfields.

With this information, the search is rather short. Let K = Z () be the field
of rational expressions in o over Z,. Suppose if possible that —a = p?, for
some f in K. Then we can write = f(a)/g(a), with f and g in Z [x]. Thus

—a(g(e)* =(fle))
and so, since o is transcendental,

—xg”=f".
But p]degree (f?) and p does not divide degree (—xg*). Thus —a« is not a
pth power in K, and so x? —a is irreducible in K[x], by Theorem 10.8. Let
L:K be a splitting field extension for x? —a, and let y be a root of x” —ain L.
Then

(x—ypP=xP—yP=x"—a

so that x?—q fails to be separable in the most spectacular way.
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Exercises

10.7 Suppose that char K = p 0. Show that every polynomial in K[x]
is separable (K is perfect) if and only if the Frobenius
monomorphism is an automorphism of K.

10.8 Show that a field K is perfect if and only if every finite extension of
K is separable.

10.9 Suppose that char K=p>0 and that f is irreducible in K[x].
Show that f can be written in the form f(x)=g(x""), where n is a
non-negative integer and g is irreducible and separable.

10.10 Suppose that char K=p>0 and that L:K is a totally inseparable
algebraic extension: that is, every element of L\K is inseparable.
Show that if feL then its minimal polynomial over K is of the
form x* —a, where a e K.

10.11 Suppose that char K =p#0, that f is irreducible in K[x] and that
L:K is a splitting field extension for f. Show that there exists a non-
negative integer n such that every root of f in L has multiplicity p".
(Hint: use Exercise 10.3.)
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Automorphisms and fixed fields

Galois theory is largely concerned with properties of groups of auto-

morphisms of a field. If L is a field, we denote by Aut L the set of all

automorphisms of L. Aut L is a group under the usual law of composition.
Suppose that A4 is a subset of Aut L. We set

¢(A)={keL:o(k)=k for each ¢ in A}.
It is easy to verify that ¢(A) is a subfield of L, which we call the fixed field of
A. In this way, starting from 4 we obtain an extension L:¢(A).

Conversely suppose that L:K is an extension. We denote by I'(L:K) the

set of those automorphisms of L which fix K:
I(L:K)={oceAut L:o(k)=k for all k in K}.

When there is no doubt what the larger field L is, we shall write y(K) for
I'(L:K). It is again easy to verify that I'(L:K) is a subgroup of Aut L; we call
I'(L:K) the Galois group of the extension L:K. In this case, then, starting
from an extension we obtain a set of automorphisms.

In this chapter we shall study this reciprocal relationship in detail.

11.1 Fixed fields and Galois groups

The operations A — ¢(A4) and L:K — y(K) establish a polarity
between sets of automorphisms of L and extensions L: K. The next theorem
is a standard result for such polarities.

Theorem 11.1 Suppose that L:K is an extension, and that A is an subset of
Aut L.

(i) yd(4) =2 4;

(i) ¢py(K)=2K;
(i) Pyp(A)=p(A);
(iv) yPy(K)=7y(K).
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Proof. If g € A, o(k)=k for each k in ¢(A), so that o € p¢p(A): this establishes
(i). If k e K, a(k)=k for each ¢ in y(K), so that k € ¢y(K): this establishes (ii).
If A, € A,, then clearly ¢(4,) = ¢(A,). Thus it follows from (i) that

PyP(A) = ¢(A):
but applying (ii), with ¢(A) in place of K,

Py P(A) = ¢(A).
This establishes (iii).
Similarly if K, = K,, 9(K,) 29(K,). Applying this to (ii):
7¢y(K) = 7(K)
but applying (i), with p(K) in place of A,

7¢(K) 27(K).
This establishes (iv).

Corollary If A is a subset of AutL, and {A) is the subgroup of AutL
generated by A, then ¢(A)= P({A4)).
For A = {A4) cy®(A), by (i), and so

H(A) 2 P({A)) 2 pyP(4) = $(A), by (iii).

Because of this, we shall usually restrict attention to subgroups of Aut L.

Suppose now that G is a subgroup of Aut L. If AeL, we define the
trajectory of 1, T(2), to be the family {5(4)},.¢- T(4) is an element of L, which
is a vector space over L. We can also consider L as a vector space over any
subfield of L, and in particular as a vector space over ¢(G).

The next theorem is particularly important: it takes a rather curious
form, as it is concerned with linear independence over two different fields.

Theorem 11.2 Suppose that G is a subgroup of Aut L, that K is the fixed
field of G and that B is a subset of L. Then the following are equivalent:
(i) B is linearly independent over K;
(ii) {T(B): Be B} is linearly independent over K;
(iii) {I(B):BeBj} is linearly independent over L.
Proof. Clearly (iii) implies (ii). Suppose that B is not linearly independent
over K: there exist distinct ,,..., f,in B, and k,, ..., k, in K, not all zero,
such that
klﬁl +-- +knﬁn=0‘
Then if 6 €G,
kla(ﬂl)+ e +k"0'(B")= O'(klﬁl +-e +km8n)=0a

so that k,; T(B,)+ - - - +k,T(B,)=0, and the set {T(f): B € B} is not linearly
independent over K in L°. Thus (ii) implies (i).
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Finally, suppose that the set of trajectories { T(B): f € B} is not linearly
independent over L in L?. There exist §,,..., ,in B,and non-zero 4,,..., 4,
in L such that

M T(By)+ - +4T(B)=0;
furtherwecanfind §,,..., f,and 4,,..., 4, so that ris as small as possible. In
detail, this says that

A0(By)+ -+ +A,0(B,)=0 for each ¢ in G. *)
Now if teG and 6€G then 1~ !0 €G, so that

At ta(By)+ - + A1 te(B,) =0 for each ¢ in G.
Operate on this equation by t:

(A)o(B)+ - - +1(4,)o(B,)=0 for each ¢ in G. **)
Now multiply (*) by (4,), (**) by 4,, and subtract:

(t(A)A; —1(44)A)0(By) + - - - +(T(A)A, -y — (4, - 1)A)0(B,-1)=0
for each ¢ in G. Thus

@Oy —tA)A)TBY)+ - + @AM, =10 J)T(B, - ) =0.
Since there are fewer than r terms in the relationship, it follows from the
minimality of r that all the coefficients must be zero:

(A4 =1(4)4, for 1<i<r;
in other words,

(A4, 1A)=A14; for 1i<r.
Now this holds for each 7 in G, and so k;=4] '€k, for 1<i<r.
Multiplying (*) by 4, !, we obtain

kyo(By)+ - +k,—10(B,-1)+0(B)=0

for each ¢ in G. But as G is a subgroup of Aut L, the identity automorphism
is in G. Thus

kiBi+-+k,_1B,—1+B,=0
and so B is not linearly independent over K. Thus (i) implies (ii).

The next theorem shows that when G is finite we can relate the order of G
to the degree of L:¢(G) in a most satisfactory way.

Theorem 11.3 Suppose that G is a finite subgroup of Aut L. Then |G|=
[L:#(G)], G=7¢(G) and L:¢(G) is a Galois extension.

Proof. Let K = ¢(G). If B is a subset of L which is linearly independent over
K then, by Theorem 11.2, {T(B): e B} is a subset of L° which is linearly
independent over L. But L° has dimension |G|, and so |B|<|G|. Thus L is
finite dimensional over K, and [L:K] <|G|. On the other hand, by Theorem
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104, [y$(G)| <[L:K]. As G =y¢(G), it follows that [L:K]=|G| and that
G=y¢(G). Since [L:K]= |G , it follows from Theorem 10.4 that L:K is a
Galois extension.

What happens if, instead of starting with a group of automorphisms, we
start with a finite extension? Here the results are not quite so clear cut. Once
again, Theorem 10.4 plays a decisive role.

Theorem 11.4 Suppose that L:K is finite. If L:K is a Galois extension, then
[y(K)|=[L:K], and K = ¢y(K). Otherwise, |y(K)| <[L:K] and K is a proper

subfield of ¢y(K).
Proof. The relationship between |y(K)| and [L:K] is given by Theorem 10.4.

By Theorem 11.3, |y(K)| = [L:¢y(K)]. Thus, if L:K is normal and separable,
[L:K]=[L:¢y(K)];

as K = ¢y(K), K = ¢y(K). Otherwise
[L:K]>[L:¢y(K)]

so that K is a proper subfield of ¢y(K).

Exercises

11.1 Suppose that L:K is a Galois extension with Galois group G, and
that o« € L. Show that L= K(a) if and only if the images of « under G
are all distinct.

11.2 Suppose that L:K is an extension. Ifoel (L:K), 6 € Endg(L), the
K-linear space of K-linear mappings of L into itself. Show that
I'(L:K) is a linearly independent subset of End(L).

11.3 Suppose that L:K is a Galois extension with Galois group G=
{61,...,0,}.Show that(f,,..., B,)isabasisfor L over K if and only
if det(a(8;))#0.

11.4 Suppose that char K=0 and that L:K is a finite extension; let
B1s. .., B, be abasis for L over K. Suppose that H is a subgroup of
I(L:K);let y; =Y, 0B;, for 1<j<n. Show that K(y,,...,7,) is the
fixed field for H.

11.2 The Galois group of a polynomial
The main purpose of the theory of field extensions is to deal with
polynomials and their splitting fields.
Suppose that e K[x] and that L:K is a splitting field extension for f
over K. Then we call I'(L:K) the Galois group of f; we denote it by I'y(f) (or
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I'(f), when it is clear what K is). By Corollary 1 to Theorem 7.5, I'r(f)
depends on f and K, but not on any particular choice of splitting field.
Let us interpret Theorem 11.4 in this setting.

Theorem 11.5 Suppose that feK([x] and that L:K is a splitting field
extension for f. If f is separable then |I'(f)|=[L:K] and K=§I(f));
otherwise |I'(f)|<[L:K] and K is a proper subfield of $(I'(f)).

An element o of I'(f) is an automorphism of L; it is the action of ¢ on the
roots of f that is all important. The next result shows that we lose no
information if we concentrate on this action.

Theorem 11.6 Suppose that feK[x] and that L:K is a splitting field
extension for f over K. Let R denote the set of roots of fin L. Each o in I'(f)
defines a permutation of R, so that we have a mapping from I (f) into the
group X of permutations of R. This mapping is a group homomorphism, and
is one-one.
Proof. If o eI'(f), then o(f)= f, since f has its coefficients in K. Thus, if
a€R,

Slo(@) = o(f)(o(@)) = o( fla)) = 6(0) =0.
Thus ¢ maps R into R. Since o is one-one and R is finite, oIR is a
permutation. By definition,

(0,05)(@)=0,(02()
so that the mapping: o — ol is a group homomorphism. Finally, if
o(x)=1(a) for each « in R, then 6~ !t fixes K(R)=L, so that g=1.

Notice that Corollary 2 to Theorem 7.5 states that, if f isirreducible, then
I'(f) acts transitively on the roots of f: if « and § are two roots of fin a
splitting field, there exists ¢ in I'(f) with o(x)=p.

Conversely, suppose that f is a monic polynomial of degree n in K[x]
which has n distinct roots in a splitting field L, and thatI"(f) acts transitively
on the roots of f. Let a be a root of f, and let m be the minimal polynomial of
. Then if B is any root of f there exists ¢ in I'(f) such that o(«)= . Thus

m(p) =m(a(a)) = o(m)(o(a)) = o(m()) =0,
and so m has at least n roots. Since m divides f, m= f and it follows that f is
irreducible.

Exercises

11.5 Describe the transitive subgroups of 2, 2, and Z.

11.6 Find the Galois group of x* —2 over (a) the rational field Q, (b) the
field Z, and (c) the field Z,.
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11.7 Find the Galois group of x*+ 2 over (a) the rational field Q, (b) the
field Z; and (c) the field Z,.

11.3 An example

Let us give an example. First we need some results about
permutation groups. Suppose that X is a set and that G is a subgroup of the
permutation group X,. We define a relation on X by setting x ~ y if either
x =y or the transposition (x, y) is an element of G. This relation is clearly
reflexive and symmetric. As

x, Yy, 2)(x, y)=(x, 2),
it is also transitive: thus it is an equivalence relation on X.

Suppose now that X is finite and that G acts transitively on X. Suppose
that E, and E, are distinct equivalence classes. As G acts transitively, there
exists ¢ in G such that o(x)=y. Now, if x' € E_,

o(x, x)o ™ =(a(x), 6o(x))=(y,0(x')) € G
and so o(x') € E,. Thus o(E,) = E,,and so |E,| <|E,|. Similarly |E,| < |E,]|,and
so any two equivalence classes have the same number of elements.

In particular if X has a prime number of elements, if G acts transitively on
X and if G contains at least one transposition, then there can only be one
equivalence class, namely the whole of X, and so G contains all
transpotiions. As the transpositions generate Xy, it follows that G= 3.

We now come to our example.

Theorem 11.7 Suppose that f € Q[x] is irreducible and has prime degree p.
If f has exactly p—2 real roots and 2 complex roots in C then the Galois
group I'(f) of f over Q is z,

Proof. Let L:Q be a splitting field extension for f, with L C. As f is
irrreducible, I'(f) acts transitively on the roots of f. Also the automorphism
z — zof C fixes the real roots of f and interchanges the complex ones (if & is
aroot of f, fla)= fla) =% =0, so that a is a root of f): since L is generated
by the roots of f over Q, L=L, and I'(f) contains a transposition. The
result therefore follows from Theorem 11.6.

As a concrete example, let us consider

f=x3—4x+2.
[ isirreducible over Q, by Eisenstein’s criterion. The function ¢t — f(t) on R

is continuous and differentiable, and so, by Rolle’s theorem, between any
two real zeros of f there is a zero of f’. But

f'=5x*-4
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has only two real zeros, so that f has at most three real zeros. As

[(=2)==-22, fl=2, fi)=-1, fl2)=26
S has atleast three real roots, by the intermediate value theorem. Thus f has
three real roots and two complex roots; by the theorem, I'(f)= X5. Notice
how useful elementary analysis can be!

Exercise

11.8 Sketch the graph of the polynomial
fi=2+x(x? —4)(x* - 16) ... (x> —4r?).
Show that if k is an odd integer then | f,(k)| > 5. Show that f,—2 is

irreducible, and determine its Galois group over Q when 2r+3isa
prime.

114  The fundamental theorem of Galois theory
The fundamental theorem of Galois theory describes the polarity
that was introduced at the beginning of the chapter in some detail.

Theorem 11.8 Supposethat L:K is finite. Let G=I'(L:K),and let K , = ¢(G).
If L:M:K, let y(M)=T(L, M).
(i) Themap ¢ is a one—one map from the set of subgroups of G onto the
set of fields M intermediate between L and K . y is the inverse map.
(i) A4 subgroup H of G is normal if and only if ¢(H):K,, is a normal
extension.
(i) Suppose that H<G. If o€egG, a]¢(H) el (p(H),K,). The map
0 — 0| ym) is a homomorphism of G onto I'(¢(H), K o)), with kernel H.
Thus
I'(p(H):Ky)~G/H.
Proof. (i) If H is a subgroup of G, H is finite, and so y¢(H)=H (Theorem
11.3). Thus ¢ is one—one. L: K is a Galois extension of K, (Theorem 11.3);
thus if L:M:K,, L:M is normal (Corollary 3 of Theorem 9.1) and separable
(Theorem 10.1). By Theorem 11.4, ¢py(M)=M. Thus ¢ is onto, and y is the
inverse mapping.

(i) Suppose that L:M:K,, and that ¢e€G. Then L:o(M):K, (since
o(L)=L, o(K,)=K,). We shall show that y(c(M))=a(y(M))s~!. For
1 €y(a(M)) if and only if To(m) = 6(m) for each min M, and this happens ifand
only if 6~ 'ta(m)=m for each m in M. Thus tey(c(M)) if and only if
o~ 7o €y(M): that is, if and only if T e s(p(M))e 1.
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Suppose that H<a1 G. Then, if 6 €G, using (i)
H=cHo ' =o(yp(H))o ™' =y(a(p(H))).
Applying ¢, ¢(H) = ¢y(c(¢(H)))=0o(¢(H)) for each ¢ in G. By Theorem 9.2,
¢(H):K, is normal.

Conversely if ¢(H):K, is normal, then

¢(H)=oa¢(H) for each ¢ in G,
by Theorem 9.2. Thus

H=y¢(H)=y(o(¢(H)) =0o(y$p(H))o "' =cHo ™!
for each ¢ in G, and so H< G.

(iii) Suppose now that H< G, so that ¢(H):K, is normal. If ¢€G,
o(¢p(H))=¢(H), by Theorem 9.2. Thus alw,) is an automorphism of ¢(H)
fixing K: that is, an element of I'(¢(H):K). Since the group multiplication is
the composition of mappings, the mapping ¢ — 6|, is a homomorphism
of G into I'(¢(H):K). o is in the kernel of this homomorphism if and only if
alw,, is the identity: that is, if and only if o fixes ¢(H). Thus the kernel is
y¢(H)=H. Finally if pel'(¢(H):K ), there exists an automorphism ¢ of L
which extends p (Theorem 10.3). As p fixes K, g is in G; as a|¢(H,= p, the
homomorphism maps G onto I'(¢(H):K).

This completes the proof. A few remarks are in order. First, the proof is,
to a large extent, a case of putting together results which have been
established earlier. It is worth pausing, and tracing these results back, to
their sources: this frequently turns out to be Theorem 7.4. Secondly, the
theorem relates subgroups of G to intermediate fields: order is reversed and,
the smaller the subgroup, the larger is the intermediate field. All the
subgroups of G relate to all the intermediate fields M of L:K,. Remember
that this occurs in terms of I'(L:M), and not I'(M :K). Normal subgroups
relate to intermediate fields M for which M :K, is normal; this justifies the
terminology. If M:K is normal, we can calculate I'(M:K) in terms of
I'(L:K), but as a quotient, not as a subgroup. Finally, we do not need
normality or separability. But if L:K is a Galois extension, then K=K,
and the result is correspondingly neater.

Exercises
11.9 Given a finite group G show that there exists a Galois extension
L:K such that I'(L:K)~G.

11.10 Suppose that K, and K, are subfields of a field L such that L:K,
and L:K, are both Galois extensions, with Galois groups G, and
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G, respectively. Show that L: K, n K, is a Galois extension if and
only if G, the group generated by G, and G,, is finite, and that if this
is so then G=T(L:K, nK ).

11.11 To answer this question, you need the following fact from group
theory:

If G is a finite group and |G|=p’q where p is a prime which does
not divide ¢ then G has subgroups of order p* for 1<s<r. (A
subgroup of order p" is called a Sylow p-subgroup.)

Suppose that L:K is an extension with [L:K]=2, that every
element of L has a square root in L, that every polynomial of odd
degree in K[x] has a root in K and that char K#2. Let f be an
irreducible polynomial in K[x], let M:L be a splitting field
extension for f over L, let G=I'(M:K) and let H=T(M:L).

(i) By considering the fixed field of a Sylow 2-subgroup of G,
show that |G|=2".
(i) By considering a subgroup of index 2 in H, show thatif n>1
then there is an irreducible quadratic in L[x].
(iii) Show that L is algebraically closed.
(iv) Show that the complex numbers are algebraically closed.

11.12 By considering the splitting field of all polynomials of odd degree
over Z,, show that the condition char K #2 cannot be dropped
from question 11.11.

115 The theorem on natural irrationalities
Suppose that f € K[x] has Galois group I'k(f),and that L:K is an

extension. Then we can consider f as an element of L[x], and can consider
the Galois group I';(f). In each case, we can consider the Galois group as a
permutation of the roots of f. In the first case we must fix K, and in the
second we must fix the larger field L. Thus we should expect I';(f) to be a
subgroup of I'k(f).

For example suppose that f is separable over K, that F:K is a splitting
field extension for f over K and that F:L:K. Then

I'y(f)=I'(F:L)<I (F:K)=T k(f).

In general L is not an intermediate field: the theorem on natural
irrationalities says that in fact this does not affect things.

Theorem 11.9 Suppose that f € K[x] and that L:K is an extension. Let N:L
be a splitting field extension for f over L,let ay,...,a, be therootsof fin N
and let M =K(o.q,. . ., a,) (so that M :K is a splitting field extension for f over
K). Let Ly be the fixed field of T',(f). Thenif 6 €' (f), a]M el(M:Lyn M),
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and the map 0:a—>cr|M is an isomorphism of I';(f) onto the subgroup
(M :LonM) of T'(f)-
Proof. We have the following diagram of inclusions.

L \

]

K

N=L(a,,.

=K(ay,...,a,)

Fy

If 0 e I'(N:L), o fixes K and permutes {«,, .. .,,} and so 6(M) < M. Thus
o]y is an automorphism of M, which clearly fixes L, ~ M. Since the group
multiplication is the composition of mappings, 6 is a homomorphism of
[(N:L) into I'(M:L,n M).

If (o) is the identity, o fixes «, . . ., &, and so (since ¢ fixes L) 0 must be the
identity on N=L(a,,...,a,). Thus 0 is one-one.

Let V be the fixed field of &(I'(N:L)). As we have seen, V2 LonM.
Suppose that xe M and x ¢ L, M. Since L, is the fixed field of I'(N:L),
there exists 6 € I'(N:L) such that o(x)#x. Thus 8(c)(x)s x, and so x¢ V.
Thus V=L, M, and so, by Theorem 11.3

OI(N:L)y=I'(M:V)=I(M:LynM).
Note that if f is separable over K, then f is separable over L, and so
L=L,: in this case the theorem becomes a little simpler.
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Finite fields

In this chapter and the next we digress a little to consider some applications
of the theory that we have developed so far.

121 A description of the finite fields
Suppose that K is a finite field: that is, a field with only finitely

many elements. Then char K =p >0, and we can identify Z, and the prime
subfield of K. As K is finite, [K :Z,] must be finite. If [K:Z,] =n, then K is
an n-dimensional vector space over Z, and as a vector space, K is
isomorphic to (Z,)". Thus |K|=p".

We shall now show that for each prime p and each positive integer n there
is essentially just one field of order p".

Theorem 12.1 For each prime number p and each positive integer n thereisa
field K with |K|=p". The field K is a splitting field for f=x?"—x over its
prime subfield. If K and K’ are two fields of order p" then K and K' are
isomorphic.

Proof. Let K: 7, be a splitting field extension for f over Z,,. Since D(f)= —1,
S has p" distinct roots in K, by Theorem 10.5. Let R denote the set of roots of
fin K. Then

R={a:¢"(@)=a},

where ¢ is the Frobenius monomorphism. But {a: ¢"(a) =0} is a subfield of
K: thus R is a field, and f splits over R. Consequently R=K and
|K|=|R|=p"

Suppose now that L is a finite field of order p" L*=L\{0} is a
multiplicative group of order p”— 1. As the order of an element of a group
divides the order of the group, A¥" ~! = 1 for all A in L*. Bearing in mind that
07" =0, this means that 4= 1 for all Ain L. Thus f =x?"—x has p" distinct
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roots in L, so that f splits over L and L is a splitting field for f overits prime
subfield. By Corollary 1 of Theorem 7.5, K and L are isomorphic.

Corollary 1 If K is a finite field, with prime subfield 7, then K:Z, is a
Galois extension.

Separability comes from the Corollary to Theorem 10.8. Using Theorem
10.1-and Corollary 3 to Theorem 9.1, we can strengthen this:

Corollary 2 If L:K is an extension and L is finite, then L:K is a Galois
extension.

Exercises

12.1 Show that if K is a finite field of order g and pis a prime then there
are exactly (g” —q)/p monic irreducible polynomials of degree p
over K.

12.2 Show that if K is a finite field and n is a positive integer then there
exists an (essentially unique) extension L:K with [L:K]=n.
12.3 Suppose that L:K is an extension and that L has p” elements. Show
that |[K|=p?, where d|n. Conversely, if d|n, show that
(x* —x)|(x"" —x) and deduce that L has exactly one subfield with
p? elements.

12.2 An example
We have just seen that we can construct fields of all prime power
orders p" by constructing splitting field extensions for f=x"" — x over Z >
The polynomial f is of course not irreducible; in certain circumstances we
obtain more information by considering splitting fields of irreducible
polynomials.
Let us illustrate this by considering fields of order p*. Let us denote the
elements of Z, by 0, 1,.. .,p— 1. We consider the polynomial
g=x"P—x—1.
This has no rootsin Z,(g(a)= — 1forall ain Z );let L .Z ,be a splitting field
extension for g over Z,, and let « be a root of g in L. Then if jeZ,
@+j)P—(@+j)—l=aP+j—a—j—1=0,
so that the roots of g are a,x+1,.. .,a+ﬁ. Note that it follows that
L=K(a).
Next we show that g is irreducible over Z,,. Suppose that g=g,g,, where
g, and g, are monic, and 1<degreeg, =d <p. Let

S={ita+1iis a root of g, }.

—
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Then the coefficient of x?~! in g, is
=Y (e+i)=—da+t,
ieS
where te Z,, As this coefficient is in Z,, —doxeZ,, and so a€Z,, giving a
contradiction.
This means that [L:K]=p, and so |L|=p®. As L:K is also a splitting field
extension for x?" —x, this means that (x” —x — 1)|(x*" —x) in Z,[x].

Notice also that, for each non-zero jin Z,,, jo, ja+1,.. ., ja+p—1are the
roots of
xP—x—j,
and an argument similar to that for g shows that this polynomial is also

irreducible. Thus L:K is also a splitting field extension for each of the
polynomials x? —x—j (1<j<p—1).

Exercise

12.4 Factorize x”" —x over Z,,.

123  Some abelian group theory

In the next section, we shall investigate further the multiplicative
group K* of non-zero elements of a finite field. This group is abelian; we
now study the structure of finite abelian groups.

Theorem 12.2 Suppose that (G, + ) is a finite abelian group. G is isomorphic to
a product of cyclic groups:
GxZy x - x1y,

Further the isomorphism can be chosen so that d;|d, for 1<j<k<s. The
number s is characterized by the property that G is generated by s elements,
but it is not generated by s— 1 elements.
Proof. We prove this by induction on |G|. Suppose that the result is true for
all abelian groups of order less than n, and that |G|=n.

There exists an integer s such that G is generated by s elements, but is
not generated by fewer than s elements. Let m be the least positive number
such that there exists a set {g,,...,g,} of generators and a relation

mg,+a,g,+---+ag,=0
(with a,, .. .,a,in Z). Note that m> 1, since otherwise G would be generated
by {g2,. .., g5} We can write a;=mgq; +r; with 0 <r; <m, for 2<i<s. Then if
hy=g,+4,9,+ - +4.9, G is generated by {h,,g,,...,9,} and

mhl +r292+' e +rsgs=0.
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The minimality of m implies that ry=r;=-.-=r,=0, and so mh; =0. We
now claim that G is isomorphic to (h,> x {g,,...,g.>- If (a,b)e<h;) %
{gsz---»9gsy, let Ba,b)=a+b. The map 6 is a homomorphism of {h,) x
{g3--.,9syinto G.Itis an epimorphism, since {h,,g,, . .., g;} generates G. If
(a,b)isinthekernel of §,a + b=0. Writinga=j,h,,b=j,g,+ - +j.g,, With
0<j, <m, we have

Jihy +j292+ - +jsg,=0.
It follows from the minimality of m that j, =0, and so a=b=0. Thus #is an
isomorphism.

We now apply the inductive hypothesis to (g,,...,g,>, which is clearly
generated by s—1 elements, but not by s—2 elements: the subgroup
{g3,---,gsy 1s isomorphic to

Zy,x X1y,
with dj|d, for 2<j<k<s. Consequently G=Z, x Z;,x--xZ,. Let
hy,...,hy be the corresponding generators in G. It follows from the
minimality of m that m<d,. Let d,=e,m+ f,, where 0< f, <m, and let
hy=h, +e,h,. Then G is generated by {h',h,,..., h}. As

mhy + f,h,=0
it follows that f,=0, and so m|d,. This completes the proof.

If G is a finite group, the exponent e(G) of G is the least positive integer k
such that g*=e, for all g in G. We have already used the fact, in Theorem
12.1, that g=e for all g in G. Thus &G)<|G], and e(G)||G|. If g€ G, we
denote the order of g by o(g): clearly o(g) <e(G), and o(g)|e(G).

Some examples: in X 5, the elements have order 1, 2 or 3; the exponent of
25 is 6. In X, the elements have order 1, 2, 3, 4, 5 or 6: ¢(G)=60, and
|G| ="720.

Corollary Suppose that G is a finite abelian group. There exists g in G such
that o(g)=e(G).

Proof. G=Z, x - x Z,, with d;|d, for 1<j<k<s. Then if g€ G, gb=¢;
thus e(G) < d;. On the other hand, G has a subgroup isomorphic to Z,;if h is
a generator of this, o(h)=d,. As o(h) <e(G), this proves the result.

Exercises

12.5 Suppose that a and b are positive integers with highest common
factor d. Show that
Ly X Ly =ZyX 2 ypy-

12.6 Show that a finite abelian group is isomorphic to a product of
cyclic groups of prime power order.
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12.7 Suppose that G is an abelian group. Show that the set T of elements
of finite order is a subgroup of G and that every element of G/T,
except the identity, is of infinite order.

12.8 Suppose that G is a finitely generated abelian group every element
of which, except the identity, has infinite order. Show that G =~ 7*,
where s is defined by the property that G is generated by s elements,
but is not generated by s— 1 elements.

12.9 Suppose that G is a finitely generated abelian group. Show that
G=7°x T, where T is a finite group.

124 The multiplicative group of a finite field

Theorem 12.3 Suppose that K is a field, with multiplicative group K* of non-
zero elements. If G is a finite subgroup of K*, then G is cyclic.

Proof. Let A=e(G). Then a*=1for all € G. As x*— 1 has at most 4 roots,
|G| <e(G). But e(G)<|G|, so that e(G)=|G|. By Theorem 12.2, G has an
element of order |G|, and so G is cyclic.

Corollary 1 If K is a finite field, K* is cyclic.

Corollary 2 If L:K is an extension,and Lis a finite field, then L:K is simple.
Proof. Let o generate the multiplicative group L*. Then L= K(a).

125  The automorphism group of a finite field

Theorem 12.4 Suppose that K is a finite field with p" elements. Then the
group of all automorphisms of K is cyclic of order n, and is generated by the
Frobenius automorphism ¢.

Proof. We can identify the prime subfield of K with Z, Every
automorphism of K fixes Z, As [K:Z,]=n and K :Z, is a Galois
extension, there are exactly n automorphisms of K, by Theorem 10.4. Let d
denote the order of ¢. Then

«”' = %) =a for each o in K
so that the polynomial x* — x has p” roots in K. This implies that d>n. As

d|n, we must have that d=n, and that ¢ generates the group of
automorphisms of K.

Corollary Suppose that L:K is an extension and that Lis finite. Then I'(L:K)
is cyclic of order [L:K].

Proof. Suppose that L has characteristic p. As K :Z,, is a Galois extension,
I(L:K)=TI(L:Z,)/T(K :Z,) by the fundamental theorem of Galois theory,
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and so I'(L:K) is cyclic. Also L:K is a Galois extension, and so
|M(L:K)|=[L:K].

Exercises

12.10 Use Theorem 124 to give another solution to Exercise 12.3.

12.11 Suppose that p and g are primes and that p <gq. Show that if p does
not divide g — 1 then there is an extension L:Z, which is a splitting
field extension for each of the polynomials x? —a (a a non-zero
element of Z,).
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The theorem of the primitive element

In this chapter, we consider the problem: if L:K is algebraic, under what
circumstances is L a simple extension of K?

13.1 A criterion in terms of intermediate fields

Theorem 13.1 An algebraic extension L:K is simple if and only if there are
only finitely many intermediate fields.
Proof. First suppose that there are only finitely many intermediate fields.
L:K must be finitely generated over K, for otherwise there is a strictly
increasing infinite sequence of intermediate fields. Thus L:K is finite
(Theorem 4.6). If K is finite, L is finite, and so L:K is simple (Corollary 2 of
Theorem 12.3). We may therefore restrict attention to the case where K is
infinite.
As we have observed, L is finitely generated over K. Let

r=inf{|A|: L=K(A)}.
We want to show that r=1. Suppose on the contrary that »>2 and that
L=K(a;,a,,...,,). Let M=K(x,,a,). For each f in K, let

Fy=K(o; + pay).
As K is infinite, and as there are only finitely many fields intermediate

between K and L, there exist § and y in K, with f#y, such that Fy=F,. But
then

(g + Poy) — (g +yaz)=(B—y)a; € Fy,

and so a, € Fy. Also oy = (a; + fax,) — Bat, € F g, 50 that K(a;, ) S Koty + Boty).
Consequently

L= K(Otl + Baz, 0(3, ey a,)
contradicting the minimality of r.

[}
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Conversely suppose that L= K(«) is simple and algebraic over K. Let m
be the minimal polynomial for « over K. m is irreducible over K, but of
course m factorizes over L. Nevertheless, m has only finitely many monic
divisorsd,, ..., d,,say,in L[x]. Now suppose that F is an intermediate field.
Let my be the minimal polynomial for « over F. Considering m as an element
of F[x], we see that m,|m. But this means that m;|m in L[x], and so m;=d;
for some 1<i<k. The proof will therefore be complete if we can show that
m; determines F. Let

mp=ao+a;x+---+ax’,
and let F,=Kl(ay,...,qa,). Then F, < F, and so m; is irreducible over F,,.
Thus m; is the minimal polynomial for a over F,. As L=F (o), [L:F,]=
degree m, (Theorem 4.4). But [L: F] =degree m,, by the same argument, so
that as F = F, we must have F=F,=K(a,, . ..,a,). Thus m; determines F;
this completes the proof.

Exercise

13.1 Use Exercise 1.17 to give another proof that L:K is simple if K is
infinite and there are only finitely many intermediate fields.

13.2 Suppose that K(t):K is a simple transcendental extension. Show
that there are infinitely many intermediate fields.

13.2 The theorem of the primitive element
This rather quaint title is given to the following theorem.

Theorem 13.2 Suppose that L:K is finite and separable. Then L:K is simple.
Proof. Suppose that a,,...,a, generate L over K. Let g=m, ... m, , where
m,, is the minimal polynomial of a; over K. Then g is separable over K. Let
N:L be a splitting field extension for g over L. As «,...,a, are roots of g,
N:K is also a splitting field extension for g over K. Thus N:K is normal
(Theorem 9.1) and separable (Corollary 3 to Theorem 10.3) and is therefore
a Galois extension. Thus K is the fixed field of I'(N:K).

Now I'(N:K) is finite, and so it has finitely many subgroups. By the
fundamental theorem of Galois theory, these are in one-one
correspondence with the fields intermediate between N and K. Thus there
are finitely many fields intermediate between N and K, and a fortiori there
are finitely many fields intermediate between L and K. The result follows
from Theorem 13.1.

Corollary If L:K is a Galois extension, there exists an irreducible
polynomial f in K[x] such that L:K is a splitting field extension for f over K.
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Exercise

13.3 Let p be a prime, let J = Z («), where « is transcendental over Z,,
and let K =J(f), where B is transcendental over J. Let L:K be a
splitting field extension for (x? —a)(x? — f).

(i) Show that [L:K]=p?.
(ii) Show that if ye L then y?e K.
(iii) Show that L:K is not simple.
(iv) Inthe case where p=2, find all the intermediate fields L: M :K.

13.4 Suppose that L:K is a Galois extension with Galois group
{0,...,0,} and that aeL. Show that L=K(x) if and only if
(0,(@),...,0,@) is a basis for L over K.

13.5 Suppose that L:K is a finite separable extension and that M:Lisa
finite simple extension. Show that M:K is a simple extension.

133  An example

Let us consider a very easy example. Q(ﬁ, \/3):@ is a splitting
field extension for f=x*—5x>+6=(x2—-2)(x>—3) over Q.

[@(\/E, \/—3-):@] =4, and the Galois gréup Tg(f) is best described by its
action on /2 and \/3:

|00=e g,

0 03
NA NN
VR VRV NG
Io(f) is isomorphic to Z,x Z, and has three non-trivial subgroups:
{60,0.}, {0¢,0,} and {6, 03}. The corresponding fixed fields are @(\/5),
@(\/5) and @(\/8). If o is any element of @(ﬁ, \/3) which does not belong
to any of these three intermediate fields, then @(\/i, \/§)=Q(oz).
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Cubics and quartics

In this chapter we shall see how the theory that we have developed so far
relates to the solution of cubic and quartic equations. In the process, we
shall introduce some ideas which will appear again when we return to the
general theory.

14.1 Extension by radicals

We have seen that we can deal with quadratic polynomials by
constructing a splitting field by adjoining a square root. Having done this,
we have a procedure for factorizing the polynomial.

In this chapter we shall see that similar results hold for cubics and
quartics. In order to see what we are trying to achieve, let us make some
definitions.

If L:K is an extension, and f§ € L, we say that fis a radical over K if f* e K
for some n. Thus a radical over K is an nth root of some element of K,
possibly in a larger field.

We shall say that an extension L:K is an extension by radicals if there are
intermediate fields

L=L,:L,_;:...:Ly=K
such that L;=L, ,(f,), with f, a radical over L, _,,for 1 <i<r. Thus L:K is
an extension by radicals if L can be obtained by successively adjoining
radicals.

Now supposethat f € K[x]. We say that f is solvable by radicals if there is
an extension L:K by radicals such that f splits over L. It is important to
note that L need not be a splitting field for f — it may be considerably larger.

The general problems that arise, then, and that we shall consider in the
subsequent chapters, are to determine whether F e K[x] is solvable by
radicals or not, and, if so, to find a procedure for factorizing f.
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14.2 The discriminant

Suppose that f is a separable irreducible monic cubic polynomial
in K[x]. Then the Galois group I'g(f) acts transitively on the three roots of
fin a splitting field, and so it must be either the full permutation group 2
or the alternating group A, How can we determine which it is?

This is a problem which we can consider quite generally. We shall,
however, suppose that char K # 2. Suppose that f is a polynomial in K[x]
and that ay,...,a, are roots of f (repeated according to multiplicity) in a
splitting field extension L:K. We set

o= [] (-

1<i<j<n

If f has a repeated root then §=0; otherwise, f is separable, and d#0. If
gelk(f) then

o@= T[] (ola)—ola))=¢,9,

1<i<j<n

where ¢,=1 if ¢ is an even permutation of «4,...,a, and ¢,= —1if o is an
odd permutation.

There are therefore three possibilities. First, §=0: in this case f has a
repeated root. Secondly, d is a non-zero element of K. In this case, J isin the
fixed field of I'c(f), so that I'y(f) = A,. Thirdly, é ¢ K. In this case, § is not in
the fixed field of I'k(f), so that I'y(f) & A,. On the other hand 4= 62 is fixed
by I'k(f), so that x* — 4 is the minimal polynomial of 8, and [K(8):K]=2.
Now I'k(f)nA, has index 2 in I (f), so that it follows from the
fundamental theorem of Galois theory that K(d) is the fixed field of
I'k(f)n A, and T'y(f)n A4,= (L:K(3)).

The quantity 4= §2is called the discriminant of f. Notice that, although &
depends on the order in which welabel the roots of f, 4does not. Let us sum
up our discussion in terms of 4.

Theorem 14.1 Suppose that char K2 and that feK[x]. Let 4 be the
discriminant of feK[x], and let L:K be a splitting field extension for f.

(i) If A=0, f has a repeated root in L.
(ii) If A#0 and A has a square root in K, then I'k(f) < A,
(iti) If 4 has no square root in K , it has a square root & in L. I'c(f) & A,,
and K(9) is the fixed field of T'y(f)N A,.
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In practice, it is not hard to calculate the discriminant. The quantity § is
given by the Vandermonde determinant:

1 1 R |

ay 0y e Oy
o=|. .

n—1 n—1 n—1

oy oy P A

If we multiply the matrix by its transpose and evaluate the determinant we
find that

n j'1 A’n—l
A= 1 ./-[2 n ’
in—l }'n /12n—2

where 4;=a} + - - - +a}. The quantities 4; can be expressed in terms of the
coefficients of f (as we shall see in Chapter 19), and so we can calculate 4.
For example, if

f=x*+a;x+a,
then
A=a} —4a,, while if
f=x*+a,x*+a,x+a,,
then

A= —4a3ay+a3a? + 18a,a,a,—4a; —27a3.

Exercises

14.1 Suppose that f is a polynomial in K[x], with roots a,,...,q, in
some splitting field extension. Show that

A=”n l—[ Df(aj)a
j=1

J N
where 7,=1 if n(mod 4)=0 or 1 and y,= — 1 otherwise.
14.2 Suppose that
f=ay+a;x+---+a,x"

isa polynomial of degree nin K[x] and thata,,.. ., a, are roots of f
in a splitting field L.

(i) Show that, in L[x], f=(x—a;)g;, where
gi=ar tay(x+a)+ - +a,x" T tax" 24 o),
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(i) Show that Df=Y7_,g;
(i) Let 4;=Y7_, af, for j=1,2,... Establish Newton’s identities:

a,_,+a,, =0,
2a,_,+a,_ A +a,l, =0,
nag+a A+ +a, Ao +a,d, =0,
and
Aol +ar g g+ H 8y 1oy Ay =0
for k=1,2,3,...

14.3 Suppose that f=x"+ px+q. Show that
M=A,=---=4,_,=0,
An—y=—(n—=1)p,
An= —ng,
Anp1=""=2z,-3=0
and

Agw—2=(n—1)p’. :
Show that the discriminant 4 of f is
A=t yn"q" "t —n,(n—1)""1p"
where n,=1 if n(mod 4)=0 or 1 and 7,= — 1 otherwise.
14.4 Suppose that char K =2 and that f € K[x] is separable. Show that
the discriminant of f always has a square root in K. Give an

example to show that Theorem 14.1 does not hold for fields of
characteristic 2.

14.3  Cubic polynomials
Suppose again that f is an irreducible monic cubic polynomial in
K[x]:

f=x3+a2x2+alx +a0.

In order to simplify things, we shall assume that char K is not equal to 2 or
3. In particular, this means that f is separable. We can simplify the
expression for f by setting y=x+a,/3: then

f=y’+py+yq,
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where p=a, —a3/3 and q=a, +2a3/27 —a,a, /3. We therefore consider the
polynomial

g=x>+px+gq.
Let L:K be a splitting field extension for g over K, and let «,, &,, a5 be the roots
of g in L. g has discriminant 4=4p>—274:let 6 be a square root of 4in L.
Then we know, by Theorem 14.1, that [L:K(8)] = 3 and that I'(L: K(d)) is the
cyclic group A;.

How do we proceed from here? Our aim is to solve g by radicals: this
suggests that we should adjoin a cube root of a suitable element 6 of K or
K(9). In fact, it is convenient to proceed rather indirectly. If we have such an
element 6 then in a suitable splitting field x3 — @ factorizes as

x> —0=(x—B)(x —wh)(x — wf)
where w and w? are cube roots of unity. As a next step, then, we adjoin cube
roots of unity: let L(w):L be a splitting field extension for x°—1=
(x—D(x2+x+ 1). We now have the following diagram of inclusions.

L(w
/ K(o, 5)
\ K(3) <

Note that there are essentially only two possibilities. First it may happen
that x* —1 splits over K(J). In this case L= L(w) and we do not need to
extend further. Secondly it may happen that x* — 1 does not split over K(d).
In this case [K(w, 6):K(8)] =2, while [L:K(8)]=3, and so x> —1 does not
split over L:L# L(w), and we go beyond a splitting field for g.

We now return to the cubic g. In L(w) we set

K(w)

B=0a, +wa,+w’uy
y=0, + 0’0, +was.
Then
By=oi +a3 +ad+ (@ + o) oo, + 05 +a05)

=(0ty + oy +03)% — 300, + o 005 +0p05) = —3p,
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so that g3y*= —27p3; and
B3 +7° =(at; + 0oy + w%a3)’ + (o) + 020y +waz) +(a, +a, +0q)?
=3} + 03 +ad)+ 18a 0,0, = —27q.
Thus
(x—B)(x—*)=x>+27gx ~27p°,
and so B° and y> are the elements
~Fq+3/-34=F9+3C0+ o=
Consequently we can obtain $* and y> by adjoining a square root of —34to
K, and then obtain f by adjoining a cube root: then y= —3p/f. Finally

a; =3B+

o, =Hw?B+wy)

a3 =Hwp+w).
Notice that in these calculations we are essentially working in L(w); as we
have observed, this may well be larger than the splitting field L.

Exercise

14.5 Suppose that char K is not 2 or 3, and that ' =x3+ px +q € K[x].
Let o« be a root of £ in a splitting field, let g = 3x2 — 30x — p, and let B
bearoot of g in a splitting field for g over K(). Express « in terms of
B and show that f is a root of

h=27x%+27¢> —p* e K[x].
Conclude that a=f—p/38, where f°= —q/2+6 and 6>°=q2%/4+

p3/27: the cubic f can be solved by extracting a square root and a
cube root.

144 Quartic polynomials
Suppose now that f is an irreducible monic quartic in K[x]:

f=x*+azx3+ax*+a;x+aq.
We continue to suppose that char K is not equal to 2 or 3. If we write
y=x+as/4, f has the form

g=y*+py*+qy+r.
We therefore consider a polynomial of the form

g=x*+px?+gx+r.

Let L:K be a splitting field extension for g over K, and let «;, a,,a; and a, be
the roots of g in L.
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Let G be the Galois group I'(g). G can be considered, by its action on the
roots of g, as a transitive subgroup of X,. Now the Viergruppe N is a normal
subgroup of X,, and so H=N NG is a normal subgroup of G. Let M be the
fixed field of H. Then by the fundamental theorem of Galois theory
I(L:M)=H and I(M:K)~G/H.

Now H is an abelian group of order 1, 2 or 4 (in fact the first possibility
cannot arise) and, as H is the kernel of the homomorphism ¢i, where i is the
inclusion map G — X, and ¢ isthe epimorphism of X, onto 2, described in
Chapter 1, G/H is isomorphic to a subgroup of X3, by the first isomorphism
theorem for groups.

This suggests that we should first attempt to determine the intermediate
field M. Let

B=o,+0a,, y=a,+a; and Jo=o,; +oy,.
Then
B? =0y + )" = —(oy + )3 + ),
Pi=(ay +a3)®= — (@, +as)a, +ay),
and
02 =(ay o)’ = — (g +0t) (2 +t3).
Consequently 82,92 and 62 are in M, and so K(8?,y2, 6%) € M. On the other

hand, if o is a permutation of a,, &,, &3 and «, which fixes f2,y% and 62, then
og€eN. Thus

[(L:K(B2,42,6%) < H = (L:M)
and so K(B2%,y%,6*)2M. Thus M = K(82%,y?,6%).
Easy but tedious calculations show that
B2 +y*+5%=-2p,
Bzyl +ﬁ252 +7252=P2 _4r’
and
Bro=—gq;
thus K(B2,72,6%):K is a splitting field extension for
x3+2px?+(p?—4nx—q>.
This cubic is called the cubic resolvent for g. By the results of the previous
section, we can construct A2, y? and 4 by adjoining square roots and cube
roots; we can then construct 8, y and ¢ by adjoining square roots (note,
though, that fyd= —gq, so that some care is needed in the choice of signs).
Then
a0y =3B +y+9),
a0, =HB—y—9),
ay=H—-p+y-9),
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ag=4(—F—y+9).

Notice that this means that L=K(8,v, ).
What are the possible Galois groups of an irreducible quartic? The
exercises which follow provide an answer to this question.

14.6

14.7

14.8

Exercises

Suppose that G is a transitive subgroup of Z,. Show that G is either
(i) 24, (ii) Ay, (ili) the Viergruppe N, (iv) cyclic of order 4 or (v) a non-
abelian group of order 8, isomorphic to the group of rotations and
reflections of a square.

Suppose that f is an irreducible quartic in K[x] (where char K is
not 2 or 3) and that L:K is a splitting field extension for f. Let g be
the cubic resolvent for f, and let M be a splitting field for g in L.
Verify that the following table includes all possibilities and that it
determines the Galois group of f in each case.

Discriminant g f ry(f)

No square root  Irreducible 2,
in K over K

Has square root Irreducible A,
in K over K

Has square root Splits over K Viergruppe
in K

No square root  Splits over K Factorizes Cyclic of order 4
in K in M[x]

No square root  Splits over K Irreducible Of order 8
in K over M

Determine the Galois groups of the following quartics in Q[x]:
(i) x*+4x+2;

(i) x*+8x—12;

(i) x*+1;

(iv) x*+x3+x2+x+1;
(v) x*-2.
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Roots of unity

We have seen that in order to deal with cubic polynomials it is helpful to
have cube roots of unity at our disposal. In this chapter we shall consider
splitting fields and Galois groups of polynomials of the form x™ — 1 over a
field K.

Technical problems can arise if char K #0. Suppose that char K=p>0
and that m=p’q, where p does not divide g. Then in Kfx],

X" —1=(x1—1F;
thus a splitting field extension for x?—1 is a splitting field extension for
x™—1: we need only consider the polynomial x? — 1. For this reason, in this

chapter we shall suppose that char K does not divide m. In this case,
D(x™—1)=mx™ 10, and so x™ — 1 has m distinct roots in a splitting field.

15.1 Cyclotomic polynomials
Suppose that L:K is a splitting field extension for x™ — 1 over K. As
x™ — 1 has mdistinct roots, L:K is a Galois extension. The set R of rootsin L
clearly forms a group under multiplication, and so, by Theorem 12.3,Risa
cyclic group of order m. An element ¢ of R is called a primitive mth root of
unity if ¢ generates R. Thus an element ¢ of L is a primitive mth root of unity
ifand onyife™=1and ¢/ # 1for 1 <j<m. For example,in C,iand —iare the
primitive fourth roots of unity: — 1is the only primitive second root of unity
and 1 is the only first root of unity. Notice that if ¢ is a primitive mth root of
unity then L=K(g).
We now define the mth cyclotomic polynomial &, to be

¢m=l—[(x_8)

where the product is taken over all primitive mth roots of unity. An element
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o in L is a root of x™ — 1 if and only if it is a primitive dth root of unity for
some d which divides m: thus

x"—1=[] &,
djm
For example, in C[x]
P=x—1, P;=(x—w)(x—0H)=x>+x+1
D,=x+1, &,=(x—i)(x+i)=x%+1
and
x*—1=(x—Dx+1)x>+1)=0,0,8,.
We have defined &, as an element of L[x]. In fact, as the examples
suggest, we can say much more.

Theorem 15.1 ®,,€K,[x], where K, is the prime subfield of K. If K,=Q
then &, € Z[x].

Proof. Since x™—1=[]ym Ps» the theorem follows from an inductive
application of the following elementary lemma.

Lemma 15.2 (i) If L:K is an extension, if geL[x] and if there exist non-
zero f and g in K[x] such that f=qg, then ge K[x].

(ii) Suppose that K is the field of fractions of an integral domain R, that
g€ K[x] and that there exist monic f and g in R[x] such that f=qg. Then
geR[x].

Proof. This is just a matter of long division.
(i) Let
q=a¢+a;x+---+a,x",
g=bo+b1x+ e +b"X",
f=coteix+- +Cpix™*"
where a,, #0, b, #0, ¢y + , 70. AS @b, =Cpp 4 n» @ € K. Suppose that we have
shown that a;eK for i>j. Then as
ajb,+a;41by 1+ Fapbysjom=Cns;
(where we set b, =0 if k<0), a;eK.
(ii) In this case b,= 1, and the same induction goes through.

Exercises

15.1 Show that the degree of &, ism] | »m((p — 1)/p), where the product is
taken over all primes p which divide m.
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15.2 Show that if n is odd then &,,(x)= &,(—x).
15.3 Show that if p is a prime then
P p(x)=1+x"""+x27"" .. g xPm VP

15.2  Irreducibility

By Theorem 15.1, we can consider the cyclotomic polynomials &,
as polynomials in K,[x], where K, is the prime subfield of K. In the case
where char K;#0, the irreducibility of &, over K, depends upon m and
char K ,: for example, @;=x?+x + 1 is irreducible over Z, while over Z,

x2+x+1=(x—2)(x—4).
(The irreducibility of cyclotomic polynomials over finite fields is the subject
of Exercises 15.5-15.9))

In the important case where char K,=0, the result is simple to state, but
remarkably difficult to prove:

Theorem 15.3 For each m, ®,, is irreducible over Q.

Proof. Suppose that @,, is not irreducible. By Gauss’ lemma we can write
®,,= fg,where fand g arein Z[x] and f'is an irreducible monic polynomial
with 1<degree f <degree &,,.

Let L: Q be a splitting field extension for &,, over Q. We shall first show
that,if ¢isa root of fin L and pis a prime which does not divide m, then ¢” is
a root of f.

Suppose not. Then, as ¢” is a primitive mth root of unity, g(e?)=0. We
define k in Z[x] by setting k(x)=g(x?). Then k(¢)=g(¢?)=0. Since f is the
minimal polynomial for ¢ over Q, f |k in @[x], and, by Lemma 15.2, we can
write k= fh, with h in Z[x].

We now consider the quotient map: n — n from Z onto Z,, and the
induced map: j — j of Z[x] onto Z,[x]. Under this map, fh=k. But

k(x) =g(x?)=(g(x))"

and so fh=(g)". Let 4 be any irreducible factor of f in Z,[x]. Then §|(g)*,
and so g|g. This means that §*| fg, so that &,,= f7 has a repeated root in a
splitting field extension over Z,. But we have seen that this is not so, since p
does not divide m. '

Now let 7 be aroot of £, and let 8 be a root of g. @ and 5 are both primitive
mth roots of unity, and so there exists r such that 6=#", where r and m are
relatively prime. We can write r=p; ... p, as a product of primes, where no
p; divides m. Repeated application of the result that we have proved shows
that 0 is a root of f. This means that @,, has a repeated root in L, and we
know that this is not so.
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Exercise

15.4 Suppose that ¢ is a primitive mth root of unity over Q, where m> 2.
Let n=¢+&~!. Show that [Q(e):Q(#)]=2, find the minimal
polynomial for ¢ over Q(y) and identify the Galois group
I'(Q(e):Q(n)].

15.3 The Galois group of a cyclotomic polynomial

Suppose that L:K is a splitting field extension for the cyclotomic
polynomial &, over K. If ¢ is a primitive mth root of unity then, as we have
seen, L =K(g).

We can write the primitive mth roots of unity as

el L g™,
where 1=ny,n,,...,n, are those integers less than m which are relatively
prime to m, and k=degree @,. Now, if n, and m are relatively prime,
Z=(n;, m) and so there exist integers a and b such that an; + bm= 1. Thus in
the quotient ring Z,,, an;= 1, and n, is a unit. Conversely if 7 is a unit in Z,,
then n and m are relatively prime. Thus (7., . . ., i) is the multiplicative group
U,, of units in the ring 7,

Now suppose that ¢ is in the Galois group I'k(®,). As L=K(e), o is
determined by its action on ¢. As d(g) is also a primitive mth root of unity,
a(g)=¢g" for some 1<j(o)<k. If T is another element of I'y(d,,),

10(g) = 1(") = (7(g)) Vo) = gt = g1 (g).
Thus I'y(®,,) is abelian. Also

Aoy =Njc/jc0)
and so the mapping ¢ — ;) is a homomorphism of I'g(®,,) into U,,. This is
one-one, since o(g)=¢ if and only if o is the identity in I'c(®,,). Further,
|I'k(®,)| =k if and only if there are k images ¢"; thus the homomorphism is
onto if and only if I'g(®,,) acts transitively on the roots of @, and this
happens if and only if @, is irreducible over K. Summing up,

Theorem 15.4 If @, is the mth cyclotomic polynomial over K, I'(®,,) is an
abelian group which is isomorphic to a subgroup of U, the multiplicative
group of units of thering Z,,. ®,, is irreducible over K if and only if I'(®,,)is
isomorphic to U,,.

As an example,

U,,={1,5,7,11}

and 12=5%=11%2=1, so that U, =7, x Z,.

If pis a prime, U, is cyclic, by Theorem 12.3. We therefore have the
following corollary:
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Corollary If p is a prime then either @, splits over K or I'y(®,) is cyclic.

15.5
15.6

15.7

15.8

15.9

15.10

Exercises

Find the Galois groups of x*+ 1 and x°+ 1 over Q.

Suppose that p is a prime which does not divide m, and let ¢ be a
primitive mth root of unity over Z ,. Show that [Z (¢):Z,,] =k, where k
is the order of pin the multiplicative group U,, of unitsin Z,,. Show
that @, is irreducible over Z,, if and only if U,, is a cyclic group
generated by p. When is @, irreducible over Z,? When is &g
irreducible over Z,?
Suppose that m=gq’, where g is an odd prime.
(i) Show that |U,|=(g—1)¢'*.
(ii) Use the fact that U, is cyclic of order g — 1 to show that there
is an element of order g—1in U,,.
(iii) Show that if ¢ does not divide a then
(1+ag"'=1+bg**1,
where g does not divide b.
(iv) Show that 1+q has order ¢! in U,
(v) Combine (ii) and (iv) to show that U, is cyclic.
Suppose that m=m, ... m,, where m,,...,m, are distinct prime
powers. Show that
UpzxUpy x - xU,.
Show that U, is cyclic if and only if m=g¢* or 2¢* (where ¢ is an odd
prime) or 4.
Is @, irreducible over (a) Z,3, (b) Z43, (¢) Z53?
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Cyclic extensions

If we are going to study extensions by radicals, it is clearly useful to be able
to answer the question: when is a Galois extension L:K a splitting field
extension for a polynomial of the form x"—6?

16.1 A necessary condition

We begin by considering a polynomial of the form x" — 8 in K[x].
In order to avoid problems of separability, let us suppose that char K does
not divide n. Let L:K be a splitting field extension for f=x"—6 over K.
Then by Theorem 10.5, f has n distinct roots, «,,...,a, say, in L. Since
(@ 1y'=00""=1, the elements o7 ", o0y ",..., a7 ! are n distinct
roots of unity in L, so that x" — 1 splits over L. Let w be a primitive nth root
of unity. Then

X"—0=(x—a)(x—wa,)...(x—a" a,).
This suggests that we should consider the intermediate field K(w), which

contains all the nth roots of unity.

Theorem 16.1 Suppose that x" — 60 € K[x], and that char K does not divide n.
Let L:K be a splitting field extension for x"—0 over K. Then L contains a
primitive nth root of unity,w say. The group I'(L:K(w)) is cyclic, and its order
divides n. x"— 0 is irreducible over K(w) if and only if [L:K(w)]=n.
Proof. We have seen that L contains a primitive nth root of unity and that
x"—0 splits over L as

(x—ﬁ)(x——mﬁ)‘. (x—0""1P).
Thus L= K(w, ) and if ¢ € I'(L:K(w)), o is determined by its action on .
Now if ¢ is in I'(L:K(w))

o(B)=w'p



124 Cyclic extensions

for some 0<j(o) <n. Since w € K(w), if ¢ and t are in I'(L:K(w)),
t0(B) = (e 7) = o 2(f) = /5B

and so the map o — j(o) is a homomorphism of I'(L:K) into the additive
group(Z,, +). Asf(;) =0if and only if 6(f) = B, and this happens if and only
if ¢ is the identity, the homomorphism is one-one. Thus I'(L:K) is
isomorphic to a subgroup of the cyclic group (Z,, +): it is therefore cyclic,
and its order divides n. ‘

If x"—0 is irreducible over K(w), |[(L:K(w))|=n, so that [L:K(w)]=
|F(L:K(w))|=n.If x"— @ is not irreducible over K(w), let g be an irreducible
monic factor in K(w), and let y be a root of g in L. Then

?)
so that x" — 0 splits over K(w,y), and L=K(w,y). Thus
[L:K(w)] =[K(w,7):K(w)] =degree g <n.

X"—O0=(x—y)(x—wy)...(x—w" !

Exercises
16.1 Show that x%+ 3 is irreducible over @, but is not irreducible over
Q(w), where w is a primitive sixth root of unity.

16.2 Show that the Galois group of x> —2 over Q can be generated by
elements p, o and 1 satisfying

pli=gt=12=1,

-1, 7
o tpa=p’,
-1, _ 14
T ipr=p4,
1 lor=0.

16.3 Let L:Q be a splitting field extension for x* — 5 over Q. What is its
Galois group? List the fields intermediate between L and Q, and
determine which of them are normal over Q.

16.2 Abel’s theorem
In the case where n is a prime, we can say more about the
irreducibility of x" — 8.

Theorem 16.2 (Abel’s theorem) Suppose that q is a prime, that x?—0 e K[ x]
and that char K # q. Then either x?— 0 is irreducible over K or x*—80 has a
root in K. In the latter case x?— 0 splits over K if and only if K contains a
primitive gth root of unity.

Proof. Suppose that x?— @ is not irreducible over K. Let L:K be a splitting
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field extension for x2—#6, let g be an irreducible monic divisor of x?—@ in
K[x] and let y be a root of g in L. Then, in L,
g=x—px—a"y)...(x—a"y)
where o is a primitive gth root of unity in L, 1<n,<n;<---<n;<q and
d=degree g. Thus if
g=x"—gs_1x* "1+ +(=1)g,,
go=w"y? for some k. Raising this to the gth power, we see that g4 =y% = ¢".
Now d and q are coprime, and so there exist integers a and b such that
ad+bg=1.
Thus
0= 646 = (30"
and so x?—0 has a root g46° in K.

If x?— 0 is not irreducible over K, [L:K(w)] divides ¢ and is less than ¢,
by Theorem 16.1, and so L=K(w). Thus K(w):K is a splitting field
extension for x? — 0: the last statement of the theorem follows immediately
from this.

Exercises

16.4 Suppose that g is a prime, that char K#¢q and that x?—0 is
irreducible in K[x]. Let w be a primitive gth root of unity, and let
[K(w):K]=j. Show that the Galois group of x?—6 can be
generated by elements ¢ and 7 satisfying

ol=tv=1, c1=10,
where k is a generator of the multiplicative group 7.

16.5 Suppose that g is a prime, that char K =q and that § € K. Describe
the splitting field for x? —6 over K.

16.3 A sufficient condition
In order to prove a converse to Theorem 16.1 we need a
fundamental result, of interest in its own right.
Suppose that G is a group and that K is a field. A (K-valued) character on
G is a homomorphism of G into the multiplicative group K* of non-zero
elements of K. We can think of a character as a K-valued function on G;
recall that the set of all K-valued functions on G is a vector space over K.

Theorem 16.3 Supposethat G isa group,that K is a field and that S is a set of
K-valued characters on G. Then S is linearly independent over K.
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Proof. If not, there is a minimal non-empty subset {y,,...,7,} of distinct
elements of S which is linearly dependent over K. That is, there exist non-
zero A4,...,4, in K such that

}41'}’1(9)4' e +An?n(g)=0 (*)
for all g in G. Each vy, is non-zero, since it sends the identity of G to 1, and so
n=2. As y; #v,, there exists h in G such that y,(h)#v,(h). Now

A1y1(hg)+-- - + 4,7,(hg)=0
for all g in G. Using the fact that the y, are characters, we have that

A1v1(R)y1(g) + - - + Aya(h)ya(g) =0
for all g in G. Now multiply (*) by 7,(h) and subtract:

A1 1 (B) =y 1(9) + - - + Ao 1 (V- 1 (W) = 7e(R))Yn— 1(9) =0
for all g in G. As y,(h)—7,(h) #0, this means that {y,,...,y,-,} is linearly
dependent over K, contradicting the minimality of {y,...,7,}.
If 7 is an automorphism of a field K, then the restriction of 7 to K* is a K-
valued character on K*. Spelling the theorem out in detail in this case, we
have the following corollary:

Corollary Supposethatzt,,...,t,aredistinct automorphisms of a field K and
thatk,,. .., k, are non-zero elements of K. Then there exists k in K such that
kit (k) +--- +k,1,(k) #0.
We now turn to the converse of Theorem 16.1. We say that an extension
L:K is cyclic if it is a Galois extension and I'(L:K) is a cyclic group.

Theorem 16.4 Suppose that L:K is a cyclic extension of degreen, that
char K does not divide n and that K contains a primitive nth root of unity, ®
say. Then there exists 0 in K such that x" — 6 is irreducible over K and L:K is
a splitting field extension for x" —0.1f Bisaroot of x"—0in L,then L = K(p).
Proof. Let o be a generator for the cyclic group I'(L:K). Since the identity,
0,0%,...,6" "1 are distinct automorphisms of L, by the corollary to
Theorem 16.3 there exists a in L such that

B=a+awa(@)+---+a" 1" {a)#0.
Observe that ¢(B)=w ~!f: this means first that f¢ K and secondly that

o(B")=(a(B))"=p", so that 6=p"eK.
As

X"—0=(x—PB)x—wf)...(x—w" " 1p),
K(p):K is a splitting field extension for x"— @ over K. Since the identity,
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o,...,6" "1 are distinct automorphisms of K(f) which fix K,
[K(B):K]=|I(K(B):K)|=n

and so L=K(f). The irreducibility of x"—6 over K now follows from
Theorem 16.1.

Exercises

16.6 Suppose that [L:K] is a prime p, that p#char K and that L is
algebraically closed. Suppose (if possible) that p> 2.
(i) Show that the cyclotomic polynomials @, and @, split over
K.
(i) Show that there exists 8 in K such that x? —6 is irreducible
over K and L:K is the splitting field extension for x? — 6.
(iii) Show that f=x?"—@ has no roots in K, and must be of the
form f=f, ... f,, where each f; is an irreducible polynomial
in K[x] of degree p.

(iv) Show thatifa,,...,a,arerootsof f, thena, ...a,=wp, where
w is a p*th root of unity and B?=0. Explain why this gives a
contradiction.

16.7 Suppose that [L:K]=4,that char K # 2 and that L is algebraically
closed. Show that there exists an intermediate field M such that
[L:M]=2and such that &, splits over M. Show that thisleadsto a
contradiction.

16.8 Suppose that char K=0, that 1<[L:K]<oo and that L is
algebraically closed. Show that [L:K]=2 and that L:K is a
splitting field extension for x2 + 1. (You will probably need the fact
that if pis a prime which divides the order of a group G then G hasa
subgroup of order p.)

The next three exercises are concerned with cyclic extensions of degree p,
in the case where char K =p.

16.9 Supposethatchar K =p,that f=x?—-x —a e K[x]and that L:K is
a splitting field extension for f. Show that if §is a root of f then the
roots of f are §,8+1,..., +p— 1. Show that either f splits over
K or f is irreducible over K and L:K is cyclic of degree p.

16.10 Suppose that L:K is a Galois extension with Galois group G. If
x€eL, let

tr(x)= )" o(x).

oeG
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16.11

16.12

16.13

16.14

164
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Show that tr is a K-linear mapping of L onto K. The mapping tr is
the trace. What is the effect of tr on K if charKI |G|?

Suppose that char K =p, that L:K is a cyclic extension of degree p
and that 7 generates I'(L:K). Let z be an element of Lwithtr(z)=1,
and let

y=(p—1)z+(p—-21(2)+ - +2t° }(2) +1*~ (2.

Show that z(y)—y=1, and that a=y?—yeK. Show that
f=xP—x—u is irreducible over K, that L:K is a splitting field
extension for f and that L=K(y).

Suppose that L:K is a Galois extension of degree n with Galois
group G. If xeL, let

tr(x)= Y o(x), Nx)=]] o(x).

oeG oeG

The mapping N is the rnorm. Suppose that o €L has minimal

polynomial

xr_alxr—l +.en +(_ 1)'a,

Show that tr(«)=(n/r)a; and N(x)=a"".

(Hilbert’s theorem 90) Suppose that L:K is a Galois extension of

degree n with cyclic Galois group generated by t, say.

(i) Suppose that o= f/7(f). Show that N(x)= 1.

(ii) Suppose that N(x)=1. Let co=0a, ¢, =at(cy), co=at(cy),. .-,
¢, -1 =ut{c,-,). Show that there exists y in L such that
B=coy+cit(y)+ - +cy- gt Hy)#0.

Show that o= S/z(f).

Suppose that L:K is a Galois extension of degree n with cyclic

Galois group generated by 7, say, and that « € L. Show that tr(a) =0
if and only if there exists § in L such that = —ap.

Kummer extensions

It is not difficult to extend Theorems 16.1 and 16.4 to Galois

extensions with abelian Galois groups.

Theorem 16.5 Suppose that L:K is a Galois extension, that I'(L:K) is an
abelian group of exponent d and that x* — 1 has d distinct roots in K. Then
there exist 0y,...,0, in K such that L:K is a splitting field extension for

x?=86,)...0*—8,).
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Proof. The proof is by induction on [L:K]. Suppose that [L:K]=n and
that the result holds for all extensions of smaller degree.
By Theorem 12.2 we can write
I'L:K)=FxH

where F is cyclic of order d and H is an abelian group whose exponent e
divides d. Let M be the fixed field of F; then M :K is a Galois extension, and
I'(M:K)~H. As x°—1 has e distinct roots in K and [M:K]<n, by the
inductive hypothesis there exist ¥,,...,¥,_, in K such that M:K is a
splitting field extension for

(x=yy) .. . x*=,_q).
Let ;bea root of x* —;in M, let 6;=y%#°and let w be a primitive dth root
of unity in K. Then

d—1
x'—0;=[] x—w'B)
i=o

so that M:K is a splitting field extension for
(x?=0y)...(x"—0,_,).
We now argue as in Theorem 16.4. Let ¢ be a generator for F. As
I(L:K)={0’t:0<j<d,t e H}, there exists « in L such that

=Y tl)+wo Y t)+---+w* le? 1Y () #0.

teH teH teH
Asbefore, 6(B,)=w ! B,,s0 that 6(B%) = (¢(B,))* = B¢ and 0, = p* € M. But also
t(B,)= P, for e H, so that 7(6,)=0, for t€ H, and so 6, K. As in Theorem
16.4, L:M is a splitting field extension for x?—0,, and so L:K is a splitting
field extension for (x?—8,)...(x*—8,).
As extension L:K is called a Kummer extension of exponent d if it is a
splitting field extension of a polynomial of the form

(x?—86)...(x*—96,

(where 0,,...,06, are in K) and if x?— 1 has d distinct roots in K.
Let us now prove a converse to Theorem 16.5.

Theorem 16.6 Suppose that L:K is a Kummer extension of exponentd. Then
I'(L:K) is abelian, and its exponent divides d.
Proof. Suppose that L:K is a splitting field extension of

f=(x'—0,)...(x*-9).
By Theorem 11.6, we need only consider the action of I'(L: K) on the roots of

f-Let w be a primitive dth root of unity in K. Then if 6 e I'(L:K) and f;is a
root of x* — 6, in L, 6(B;) = w"B, for some n, ;, so that c*(B,)=p;,and o =e.
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This implies that the exponent of I'(L:K) divides d. If z is another element of
I'(L:K),
10(B)=1(0"B)) = w"vw"B;
=o(w"f))=0t(B)),
so that I'(L:K) is abelian.

Exercises

16.15 Suppose that K is a field which contains a primitive nth root of
unity and that x" —a and x" — b are irreducible over K. Show that if
b=a'"c" for some r which is prime to n and some ¢ in K, then x"—a
and x"—b have the same splitting field extension over K.

16.16 Suppose K is a field which contains a primitive nth root of unity,
and that x" —a and x" — b are irreducible polynomials over K with
the same splitting field extension L:K. Let a be a root of x" —ain L,
B a root of x" —b. By considering the action of I'(L:K) on & and 8,
show that there exists r, prime to n, such that fa ™" € K. Show that
b=a'c" for some ¢ in K.
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Solution by radicals

The results of the two preceding chapters, together with the fundamental
theorem of Galois theory, suggest that, provided that we can construct
enough roots of units, a separable polynomial is solvable by radicals if and
only if its Galois group can be built up in some way from abelian groups.
We shall see that this is indeed so: but first we must develop some group
theory.

17.1 Soluble groups: examples
A group G is said to be soluble if there is a finite series of subgroups
{e}=G, =G, 1= =G, =Gy=G
such that
() G;<G,_, for 1<i<n, and
(i) G;_,/G; is cyclic, for 1<i<n.

Let us consider some examples. The alternating group A; is a cyclic
normal subgroup of X5, and X,/A4, is cyclic of order 2, so that A; and 25 are
soluble. In X, let G,={e}, G3={e,(12)}, G,=N, the Viergruppe, G, = A4,
and Gy,=2,. Then

G,<G3<xG,,<Gi<Gy
and G5/G,, G,/G5and G,/G, are all cyclic of order 2, while G, /G, is cyclic of
order 3. Thus 4, and X, are soluble.

If G is a finitely generated abelian group, generated by g4,. .., g, say, let
G,={e} and G;=G{g,,...,g,-;} for 0<j<n. Then trivially G;< G;_, for
1<j<n,and each G;_,/G;is cyclic, since G;_ /G, is generated by the coset
G;+9g,-j+1- Thus every finitely generated abelian group (and in particular
every finite abelian group) is soluble.

We have seen that A, and A, are soluble. We shall show that the
alternating groups A,, for n<5, are all simple: that is, they have no non-
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trivial normal subgroups. Since these groups are certainly not cyclic, it
follows that they are not soluble.

Let us show that A4, is simple for n> 5. It will be assumed that you are
familiar with the representations of permutations as products of disjoint
cycles. 4, 1s generated by the set S of products of two transpositions. We can
write S={e}UBUT, where B is the set of products of two disjoint
transpositions and T'is the set of 3-cycles. Now if n > 5, any element of T can
be written as a product of two elements of B: for example, (123)=
((45)(12))((23)(45)). 1t is therefore sufficient to show that if N is a normal
subgroup of A, other than {e}, then N 2 B.

We prove this by induction on n,forn > 4. The result is true for n =4, since
the normal subgroups of 4, are {e}, the Viergruppe and A,. Suppose that
n>4, that the result is true for n — 1, and that N is a normal subgroup of 4,
other than {e}. For each 1<j<n, let F;={o€A4,:0(j)=j}. Each F; is a
subgroup of 4,,isomorphic to 4, ;. Suppose that 7 is an element of N other
than the identity. If 7 is a product of disjoint transpositions —
T=(a;a,)(asa,) ... say — then

(a,a3)(azas)=(a,a,a3)t(a;aza)t €N.
Otherwise T contains a cycle of length greater than 2, so that we can write
T=(a,a,4a; . ..ay)o. Let b be different from a,, a, and a;. Then either z € F,
or, setting 7' =(a,t(b))(a,b)r(a,b)a,t(b)), T’ €N, '(b)=1(b), while 7'(z(b))=
a; #1(t(b)) so that t~'7’ is an element of N N F, other than the identity.

In either case, we conclude that there exists j such that N 0 F;# {e}. But
N N F;is a normal subgroup of F; and so, by the inductive hypothesis, N
contains all elements of B which fix j. But if (ij)(kl) is an element of B which
moves j, and if m is different from i, j, k and [ then

E)(kD = (mj) kD) (im) (D) (mj) (kD) € N.
Thus N 2 B and the proof is complete.

172 Soluble groups: basic theory
Let us now establish some results concerning soluble groups. First
we need a general result.

Theorem 17.1 Suppose that G is a group, that H<1 G, and that A is a
subgroup of G.
(i) HhA<1 A, and A/(HN~A)~HA/A.
() If H= A and A< G, then H<a A, A/H<1 G/H and (G/H)/(A/H)=
G/A.
Proof. ) If he HnAand ac A,a *haeH n A, so that H n A<a A. Let g be
the quotient mapping G — G/H, and let j: A — G be the inclusion mapping.
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The gj is a homomorphism of 4 onto HA/H with kernel H N A, so that the
result follows from the first isomorphism theorem.

(ii) Certainly H<a 4, by (i). If C is a right coset of Hin G, let 8(C)=AC. AC
is a right coset of 4 in G and 6:G/H—G/A is a homomorphism onto G/A.
The kernelis {C:C < A} = A/H, so that the result again follows from the first
isomorphism theorem.

Theorem 17.2 (i) If G is a soluble group and A is a subgroup of G then A is
soluble. ,

(ii) Suppose that G is a group and H<a G. Then G is soluble if and only if H
and G/H are soluble.

Proof. (i) Let {e}=G,< G,_,<1---<3 Go=G, such that G, _ /G, is cyclic for

1<i<n. Let A;=ANG,;. Then A;=A4;,_nG;< A;_, and
A;1/A4;=G;4;_ /G,

by (i) of Theorem 17.1. But G;4;_,/G, is a subgroup of the cyclic group

G;_,/G,, so that either A, ;= A, or A;_,/4; is cyclic.

(ii) First suppose that G is soluble, and that {¢} =G,<1---<1 G, =G, with
G,_,/G; cyclic. H is soluble, by (i). Let H,;=HG,/H. Now if Hg;e H; and
Hg;, ,eH;_,,

(Hg,-,) 'Hg;Hg;, =g, Hg:Hg; ,
=Hg ' 9:9;1 €H,
so that H;<a H;_,.

Let q:G — G/H be the quotient mapping and let ¢;:H;_, - H;_,/H;
denote the quotient mapping. Then ¢(G;_,)=H,_,,and ¢;g maps G;_ onto
H;_,/H, An element g of G, _, isin the kernel of ;g if and only if Hge HG;
that is, if and only if g € HG,. The restriction of g, to G;_, therefore has
kernel HG;nG;_, so that by the first isomorphism theorem,

H;_/H;=G;_/(HG;NG,_,).
But G;<1 G;_, and G; < HG;nG,_,, so that by Theorem 17.1(ii),
G;_1/HG;nG,;_)=(G;_{/G)/(HG;nG;_,)/G).

The right-hand side is a quotient of a cyclic group, so that either H; ., =H;
or H;_,/H, is cyclic. Thus G/H is soluble.
Now suppose that H<a G and that H and G/H are soluble. There exist

{e}=H,<---<Hy=H, with H;_,/H, cyclic
and
{H}=K,<K,_,<---<K,=G/H, with K;_,/K; cyclic.
Let g: G — G/H be the quotient mapping, and let G;=¢~ (K ) for 0<j<m.
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Ifg;eG;and g;_,€G,_,
4(9;°19;9;-1)=(a(g;-1))"*a(g)a(g;-1) €K},
since K;<1K;_;, and so g;1g;9;,-, €G; Thus G;_,;<1G;. By Theorem
17.1(i1)
Gj-1/Gj3(Gj—1/H)/(Gj/H)=Kj—1/K,-,
which is cyclic. Thus the series
{e}=H,<---<Hy,=H=G,<G,_;<---<1G,=G
shows that G is soluble.

Corollary X, is not soluble, for n=35.
It has a subgroup (45) which is not soluble.

Exercises

17.1 A group G is nilpotent if there is a finite series of subgroups
{e}=G”an_1 [ QG(,:G
and that each G;is normal in G and G,/G, , , is abelian for 0 <i<n.

Show that a finite nilpotent group is soluble and give an example of
a finite soluble group which is not nilpotent.

17.2 Suppose that G is a group of order p" (where p is a prime). Show
that the centre Z = {z:gz=zg for all g in G} has at least p elements,
and show that G is nilpotent.

173  Polynomials with soluble Galois groups

In this section we shall show that, if f is separable and has a soluble
Galois group, then, provided that we can construct enough roots of unity, f
is solvable by radicals.

Theorem 17.3 Suppose that f is a separable polynomial in K[x] whose
Galois group I'y(f) is soluble, and suppose that char K does not divide |I'c(f)|.
Then f is solvable by radicals.

Proof. The proof is largely a matter of putting together results that we have
already established. Let d=|I't(f)|. If K does not contain a primitive dth
root of unity, we can adjoin one, ¢ say. Let L=K(e). L:K is an extension by
radicals. Since char K does not divide d, L contains d distinct dth roots of
unity. Now let N:L be a splitting field extension for f over K. N:Lis a
Galois extension, and by the theorem on natural irrationalities (Theorem
11.9) I'(N:L)=I",(f) is isomorphic to a subgroup of I'x(f). Thus I' (1) is

P
i
4
;
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soluble, by Theorem 17.2(i). This means that there exist subgroups
{e}=Gr< Gr—l< RS GO=FL(f)
such that G;_,/G; is cyclic, for 1<j<r.

We now exploit the fundamental theorem of Galois theory. Let L; be the
fixed field of G;. Then
N=L:L, _,:...:Ly=L.
Also I'(N:L;_,)=G;_,, and G;<1G;_;, so that, by the fundamental
theorem,
I(Ly:L;_1)=G;_,/G;, for 1<j<r.
Thus L;:L;_, is a cyclic extension. Also [L;:L;_,1=|G;_,/G}, so that
[L;:L;_,] divides d: thus char K does not divide [L;:L;_,], and L;_,
contains a primitive [L;:L;_,]th root of unity. By Theorem 16.4, there
exists an element f;in L; such that L;= L;_,(B;) and such that f;is a radical
over L;_,. Thus N:L is an extension by radicals, and so N:K is also an
extension by radicals. Since f splits over N, f is solvable by radicals.
Notice that if f € K[x] and if either char K =0 or char K > degree f, then
f must be separable, by Theorem 10.6, and char K cannot divide [F «(f)],
since |I'x(f)| divides (degree f)!.

174 Polynomials which are solvable by radicals

We now turn to results in the opposite direction. Here, the main
problem is one of normality. Suppose that

L=L:L _,:...:Ly=K
is an extension by radicals. Even if K contains sufficiently many roots of
unity, so that each of the extensions L;:L;_, is normal, it does not follow
that L:K is a normal extension. We get round this difficulty by a
symmetrization argument.

Theorem 17.4 Suppose that L:K is a Galois extension, that M = L(f), where
Bisaroot of x"—0(with 0in L) and that char K does not divide n. Then there
exists an extension by radicals N:M such that N:K is a Galois extension.
Proof. Since char K does not divide n we can if necessary adjoin a primitive
nth root of unity, ¢ say, to M. Then in M(e)[x]
x"—0=(x—p)x—ef)...(x—&""' )
so that M(g): L is a splitting field extension for x" — 8 over L. As x"—6 has n
distinct roots, M(g):L is a Galois extension. Note also that M(g):L=
L(B,¢):L is an extension by radicals.
Now let G=T(L:K) and let
=11 &x"—a(6).

aeG
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Let N :M(e) be a splitting field for f over M(g): we have the following tower
of extensions:

N:M(e):M:L:K.
If B, is a root of x"—a(f) in N then

X" —o(6)=(x—B,)(x—eB,)... (x ="~ B,);

thus N:L is a splitting field extension for f over L. Also, x"—a(6) has n
distinct roots in N, for each o, so that f is separable over M(g). As M(g):L
and L:K are both separable, this means that N : K is separable, by Corollary
4 to Theorem 10.3.

We now use the symmetry of f; if T e G, ©(f)= f so that, since L:K is a
Galois extension, f'e K[x]. There exists g in K[x] such that L:K is a
splitting field extension for g over K. Thus N :K is a splitting field extension
for fg over K, and so N:K is normal.

Finally observe that N is obtained from M by first adjoining ¢ and then
adjoining the roots of x" —a(6), for ¢ in G, and so N:M is an extension by
radicals.

We now apply this to extensions by radicals.

Theorem 17.5 Suppose that
L=L_:L, _,:...:Ly=K

is an extension by radicals, with L;=L,_,(B,), where B, is a root of x"—0;
(with 6;eL;_,). Then if char K does not divide nn,...n,, there exists an
extension M :L such that M :K is a Galois extension by radicals.

Proof. We prove this by induction on r. The result is trivially true when
r=0. Suppose that the result holds for r — 1. Then there exists an extension
M,_,:L,_; such that M,_,:K is a Galois extension by radicals.

Let m, be the minimal polynomial for 8, over L,_, and let n, be an
irreducible factor of m,, considered as an element of M, _; [x]. By Theorem
7.2, there is a simple algebraic extension M,_,(y):M, such that n,(y)=0.
Since this means that m(y) =0, it follows from Theorem 7.4 that there is a
monomorphism i from L=L,_,(,) into M,_,(y), fixing L,_,, such that
i(,)=7v. In other words, identifying L with i(L), we can suppose that L and
M, _, are both subfields of M, _,(8,).

We apply Theorem 17.4 to the Galois extension M,_,:K and M,_,(f,),
and conclude that there is an extension M,: M, _,(f,) by radicals such that
M,:K is a Galois extension. We have the following diagram:
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M

f

r lﬂr)
\
L=L,=L,_,(B)
\ /

K

r

Since each of the extensions M,:M,_,(8,), M,_(f):M,_,and M,_,:K is
an extension by radicals, so is M,:K.

Notice that the conditions on char K are also satisfied by the extension
M:K.

Theorem 17.6 Suppose that

L=L,:L,_y:...:Ly=K
is an extension by radicals, with L,=L;_(B;), where B; is a root of x"i—6;
(with 6;in L;_,), and that char K does not divide n, .. .n,. If feK[x] splits
over L, then the Galois group I'(f) is soluble.
Proof. By Theorem 17.5 and the remark following it, we can assume that
L:K is a Galois extension.

Foreach 1<i<r, L:L;is a Galois extension (Corollary 2 to Theorem 9.1,
and Theorem 10.1): x" — 6, has a root §; in L, and so it splits over L. This
means, by Theorem 16.1, that L contains a primitive n;th root of unity. Let n
be the lowest common multiple of n,, .. ., n,: then L contains a primitive nth
root of unity, ¢ say.

Now let Li=Lye), for 0<i<r. Then we have the following tower of
extensions:

L=L:L,_,:...:Ly=Lye):Lo=K
We shall show that G=TI'(L:K) is soluble. Let G;=TI'(L:L}),for 0<i<r. As
Li:L;_, is a splitting field extension for x" — 0, over L; ,, L{:L;_, is cyclic,
and so by the fundamental theorem of Galois theory G;<G;_, and
G,_,/G;=I'(Li:L;_,). Thus Go=I'(L:Ly)=I'(L:K(g)) is soluble. Now ¢ is a
primitive nth root of unity, so that K(¢):K is a splitting field extension for
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x"—1, and I'(K(g):K) is abelian (Theorem 15.4), and therefore soluble. By
the fundamental theorem of Galois theory,
I'(K(e):K)=I'(L:K)/I'(L:K(e))= G/G,
so that G/G,, is soluble. Consequently G is soluble, by Theorem 17.2.
Remember that f splits over L. Let N:K be a splitting field extension for
fover K, with N < L. The extension N :K is normal; using the fundamental
theorem of Galois theory once again,
I'(f)=T(N:K)=T'(L:K)/T'(L:N)=G/I'(L:N),
and so I'k(f) is soluble, by Theorem 17.2.
As an example, we have seen that the quintic x> —4x+2 is irreducible

over @, and has Galois group Xs. X5 is not soluble, and so x> —4x+2
cannot be solved by radicals!

Exercise

17.3 Let Ly=Q, L, =Q(3'?, L,=Q((3'2+ 1)"/?). Show that L,:L,
and L,:L,; are both normal extensions but that L,:L, is not
normal. Find the minimal polynomial of (3!/2+ 1)!/2 over @, and
find its Galois group.

17.4 Let f be an irreducible cubic in K[x], where K is a subfield of R.
Show that f has three real roots if and only if its discriminant is
positive.

17.5 Suppose that K is a subfield of R and that f is an irreducible cubic
in K[x] with three real roots. Suppose that L=K(r), where re R
and r’e K for some prime p. Show that f is irreducible over L.

17.6 Suppose that K is a subfield of R and that f is an irreducible cubic
in K[x] with three real roots. Show that if L:K is an extension by
radicals with L = R then f is irreducible over L. (It is not possible
to solve f only by extracting real roots!)

17.7 Give an example of a polynomial in Q[x] which is solvable by
radicals, but whose splitting field is not an extension by radicals.
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Transcendental elements and
algebraic independence

18.1 Transcendental elements and algebraic independence
In this chapter, we leave the study of algebraic extensions, and
consider problems concerning transcendence.
Suppose that L:K is an extension and that aeL. Recall that a is
transcendental over K if the evaluation map E,: K[x] — L is one—one; that
is, o satisfies no non-zero polynomial relation with coefficients in K.

Theorem 18.1 Suppose that L:K is an extension and that ae€l is
transcendental over K. Then the evaluation map E, can be extended uniquely
to an isomorphism F, from the field K(x) of rational expressions in x over K
onto the field K(o).

Proof. The proof should be quite obvious: here are the details.

Remember that the field K(x) is obtained by considering an equivalence
relation on K[x] x (K[x])* (see Section 3.2).

Suppose that (f,g)eK[x] x(K[x])*. As a is transcendental over K,
g(@)#0, and we can define G,(f,g)= fla)(g() 1. If (f,9)~(f",g) then
fg'=f"g in K[x], so that fla)g'(a)=f"(a)g() and G,(f,g)=G.(f",¢). Thus
G, is constant on equivalence classes: we can therefore define F (f/g)=
G,(f,g). It is straightforward to verify that F, is a ring homomorphism.
Since F(x)=E (x)=a, F(K(x))=K(x). On the other hand, if f/geK(x),
F(f/g)=fla)(g(«)) ! € K(a), and so F,(K(x))= K(). Finally if F is another
monomorphism which extends E,, the set

{reK(x):F (r)=Fr)}
is a subfield of K(x) which contains K[x]; it must therefore be the whole of
K(x), and so F, is unique.

We now generalize the idea of a transcendental element. Suppose that

L:K is an extension and that A={«,,...,a,} is a finite subset of L (where
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oy,- .., 0, are distinct). Any element f of K[x,,..., x,] can be written in the
form

f Z k xll g
where k; eK for 1<j<m, and d ; is a non-negative integer for 1<i<n,
1<j<m. We define the evaluatzon map E, from K[x,,...,x,] into L by

setting

EAf)= z Koo .. of.

It is easy to see that E , is a ring homomorphism. We shall frequently write
E (f)as floy,. .., 0,).

We say that A4 is algebraically independent over K if E , is one—one: that is,
there is no polynomial relation, with coefficients in K, between the elements
ay,...,0, Thus a one-point set {«} is algebraically independent over K if
and only if « is transcendental over K.

We say that an arbitrary subset S of L is algebraically independent over
K if each of its finite subsets is algebraically independent over K.

The proof of the next result is exactly similar to the proof of Theorem
18.1: this time we omit the details.

Theorem 18.2 Suppose that L:K is an extension and that A={a,,...,&,} is
algebraically independent over K. Then the evaluation map E, can be
extended uniquely to an isomorphism F, from the field K(x,,...,x,) of
rational expressions in x,,...,x, onto the field K(x,,...,a,).

The next theorem is again very easy: it gives a useful practical criterion for
a finite set to be algebraically independent over K.

Theorem 18.3 Suppose that L:K is an extension and that a,,...,q, are
distinct elements of L. Let Ky=K,K;=K(ay,...,;) for 1 <i<n. Then A=
{oty,...,a,} is algebraically independent over K if and only if a; is
transcendental over K;_,, for 1<i<n.
Proof. Suppose that «; is algebraic over K;_,. Thus

f(oti)=k0+kla,~+ e +k,a:=0
for some non-zero f in K;_;[x]. We can write each k; as

ki=pjlay, ... - 1)(q ey, .. %) 7Y
where the p; and g; are in K[x,,...,x;_,] and the g,(«;,...,a;_;) are non-
zero. We clear the denominators. Let

l].—.p}(l—[ qk)’ for 0<]$r

k+# j
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Then each J; is in K[x,,...,x;_;] and

g=lo+lx;+---+1x]
is a non-zero element of K[x;,...,x;]. As g(a;,...,a)=0, A is not
algebraically independent over K.

Conversely suppose that {a,,...,a,} is not algebraically independent
over K. There exists an index j such that {a,,...,o;_,} is algebraically
independent over K, while {a,..., a;} is not. Thus there exists a non-zero g
in K[x,,...,x;]suchthatg(a,,...,a;)=0. Grouping terms together, we can
write

g=ko+k;x;+---+kxj
where k; e K[xy,...,x;_,] for 0<i<r. Let
h=k0(a1, ‘e -,aj-1)+k1(“1, ey aj_l)x+ “ec +k,(0£1, ey aj_l)x’.

Then heK;_,[x], and h is non-zero, since {a,,...,a;_,} is algebraically
independent over K. As h(a;)=0, a; is algebraic over K;_,.

Exercises

18.1 Suppose that L:K is an extension, and that {a,,...,0;} is
algebraically independent over K. Show thatif fe K(«,,. .., o) and
B¢ K then B is transcendental over K (cf. Exercise 5.3).

18.2 Suppose that K(x):K is a simple extension and that o is
transcendental over K. Show that if 7 is an automorphism of K(e)
which fixes K then there exist a, b, ¢ and d in K with ad # bc such
that

() =(ax + b)/(ca +d).

Conversely show that any such a, b, ¢ and d determine an
automorphism of K(x) which fixes K.

18.3 Suppose that K(x):K is a simple extension and that o is
transcendental over K. Let ¢ be the automorphism of K(«) which
fixes K and sends « to 1/(1—a). Verify that ¢ is the identity, and
determine the fixed field of o.

18.4 Suppose that K(x):K is a simple extension, that « is transcendental
over K, and that char K is an odd prime p. Suppose that 1 <n<p.
Let 7 be the automorphism of K(x) which fixes K and sends « to na.
Determine the fixed field of z.

182  Transcendence bases
We now introduce an idea which corresponds in many ways to the
concept of basis of a vector space. Suppose that L:K is an extension. Let .#
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denote the collection of all subsets of L which are algebraically independent
over K. We order .# by inclusion. An element S of .# which is maximal in
this ordering is called a transcendence basis for L over K.

The next result characterizes transcendence bases.

Theorem 18.4 Suppose that L:K is an extension and that S is a subset of L.
Then S is a transcendence basis for L over K if and only if S is algebraically
independent over K and L:K(S) is algebraic.

Proof. Suppose that S is a transcendence basis for L over K. Suppose that
is an element of L which is not in S. By the maximality of S, Su{a} is not
algebraically independent over K, so there exist distinct s;,...,s,inSand a
non-zero f in K[x,,...,x,] such that

S, 54,...,8,)=0.
We can write f as
ko+kyxo+ - +kxh,
where k;eK[x,,...,x,], for 0<i<j, and k;#0. Now {s;,...,s,} is

algebraically independent over K. From this we conclude first that j > 1 and
secondly that ks,,...,s,)#0. Now

Ko(Sgse s S)Hhy(Sy,. s 8)+ - +kisy,. .., 800 =0:
since ki(sy,. . ., s,) € K(S), this means that « is algebraic over K(S), and that
L:K(S) is algebraic.

Conversely, suppose that S is algebraically independent over K and that
L:K(S) is algebraic. If « is an element of L which is not in S, « is algebraic
over K(S), so there exists a non-zero

g=ko+k1 + M ",'k].xJ
in K(S)[x] such that g(«)=0. Each coefficient k; involves only finitely many
elements of S, and so there exists a finite subset {s,,...,s,} of S such that
k;eK(sq,.-.,s,) for 0<i<j. Thus « is algebraic over K(s,,...,s,) and so
{s15..., 8,0} is not algebraically independent over K, by Theorem 18.3.
Consequently Su{a} is not algebraically independent over K, and S is
maximal.

Just as every vector space has a basis, so does every extension L: K have a
transcendence basis. As in Theorem 2.1, we prove rather more.

Theorem 18.5 Suppose that L:K is an extension, that A is a subset of L such
that L:K(A) is algebraic and that C is a subset of A which is algebraically
independent over K. Then there exists a transcendence basis B for L over K
with CEB< A.

Proof. The proof is very similar in nature to the proof of Theorem 2.1.
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Indeed, if we replace the phrase ‘linearly independent’ by ‘algebraically
independent over K’, we obtain a proof of the fact that there is a set B which
is maximal among those which contain C, are contained in 4 and are
algebraically independent over K.

The argument of Theorem 18.4 now shows that each element « of A4 is
algebraic over K(B), and so K(A):K(B) is algebraic, by Corollary 2 to
Theorem 4.6. As L:K(A) is algebraic, L: K(B) is algebraic (Theorem 4.7) and
so B is a transcendence basis for L over K, by Theorem 18.4.

Consider the extension R:Q. If S is any countable subset of Q, Q(S) is
countable. If R:CQ)(S) were algebraic, R would be countable (Exercise 4.7).
Thus any transcendence basis for R over Q must be uncountable.

Note that, on the other hand, it follows from Theorem 18.5 that if L:K is
finitely generated over K then there must be a finite transcendence basis for
L over K.

Exercise

18.5 Suppose that L:K is an extension, and that L is finitely generated
over K. Show that the field K, of elements of L which are algebraic
over K is finitely generated over K.

18.3  Transcendence degree
We now pursue further the parallelism with vector spaces. First we
establish a version of the Steinitz exchange theorem (Theorem 1.3).

Theorem 18.6 Suppose that L:K is an extension, that C={c,,...,c,} is a
subset of L (with r distinct elements) which is algebraically independent over K
and that A={ay,...,a,} is a subset of L (with s distinct elements) such that
L:K(A) is algebraic. Then r <s, and there exists aset D,withC<D < AuC
such that |D|=s and L:K(D) is algebraic.
Proof. We prove this by induction on r. The result is trivially true for r=0
(take D = A). Suppose that it is true for r — 1. As the set Co={c;,...,¢,-,} is
algebraically independent over K, there exists a set D, with
Co = Dy = AuCysuchthat|Dy|=sand L:K(D,)is algebraic. By relabelling
A if necessary, we can suppose that

Do={C1sevvsCr1rQpyApyqs---5 A}
As L:K(D,) is algebraic, c, is algebraic over K(Do). As {cy,...,c,} is
algebraically independent over K, ¢, is transcendental over K(cy,...,¢,—4)
(by Theorem 18.3). Thus s=>r. Also, by Theorem 18.3 again,

E={c1,..sCr1,CrsQpylypiys- .., 04}



144 Transcendental elements and algebraic independence

is algebraically dependent over K. Using Theorem 18.3 once more, and
using the fact that {c,...,c,} is algebraically independent over K, we
conclude that there exists t, with r<t<s, such that a, is algebraic over
K(cy, .. sCrspse.a_y). Let D={cy,...,CpsOpye o @ 1,841 1,---,d5}. Then
a, is algebraic over K(D), and so K(E):K(D) is algebraic. As E 2 D, L:K(E)
is algebraic, and so L:K(D) is algebraic, by Theorem4.7. AsC=D < AuC
and |D|=s, this completes the proof.

Corollary If L:K is an extension, and S and T are two transcendence bases
Jor L over K then either S and T are both infinite or S and T have the same
finite number of elements.

If an extension L:K has a finite transcendence basis, we define its
transcendence degree to be the number of elements in the transcendence
basis; otherwise we define the transcendence degree to be co.

184  The tower law for transcendence degree

Suppose that M:L and L:K are extensions. How is the
transcendence degree of M :K related to the transcendence degrees of M:L
and L:K?

Theorem 18.7 Suppose that M:L and L:K are extensions, that A is a subset
of L which is algebraically independent over K and that B is a subset of M
which is algebraically independent over L. Then AUB is algebraically
independent over K. ‘

Proof. Let C be a finite subset of AU B. We can write

C={a1,.. .,er,ﬂly- . wﬂs}

witha; € 4, B; € B. By Theorem 18.3, «;is transcendental over K(ay,...,%;_y)
for 1<i<rand B;is transcendental over L(B,,. . ., B;_;) for 1<j<s,and so
B; is transcendental over K(ay,..., %, By,...,8;-y) for 1<j<s. Thus C is
algebraically independent over K, by Theorem 18.3. Since this holds for any
finite subset of AU B, AU B is algebraically independent over K.

Theorem 18.8 Suppose that M:L and L:K are extensions, that A is a
transcendence basis for L over K and that B is a transcendence basis for M
over L. Then AU B is a transcendence basis for M over K.
Proof. By Theorems 18.4 and 18.7 it is enough to show that M:K(4 U B) is
algebraic.

Since A is a transcendence basis for L over K, L:K(A) is algebraic. Since
K(A) € K(AuB), it follows that K(AuUB)(L):K(AuUB) is algebraic. As
K(A v B)(L)= L(B), this means that L(B):K(Au B) is algebraic. But B is a
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transcendence basis for M over L, and so M:L(B) is algebraic. Thus
M:K(Au B) is algebraic, by Theorem 4.7.

Corollary If M:L and L:K are extensions, the transcendence degree of
M:K is the sum of the transcendence degrees of M:L and L:K.

18.5  Liiroth’s theorem

Suppose that L:K is a finitely generated extension which has
transcendence degree r. If a5, ..., a, is a transcendence basis for L over K,
then L:K(a,,...,a,) is finite. If we can find a transcendence basis a,. .., a,
for L over K such that L=K(x,,...,a,), then we say that L is purely
transcendental over K. Even in particular cases, it is not easy to determine
whether a finitely generated extension is purely transcendental or not (see
Exercises 18.6 and 18.7 below). There is, however, one case where the
problem case be solved in a straightforward way. The proof involves
polynomials in two variables: first make sure that you are familiar with the
contents of Section 3.7.

Theorem 18.9 (Liiroth’s theorem) Suppose that K(t):K is a simple extension
and that t is transcendental over K. If L is a subfield of K(t) containing K then
L:K is a simple extension.
Proof. We clearly need only consider the case where L is different from both
K and K(1). If s e L\K, we can write s= p(t)/q(t) where p and g are non-zero
polynomials in K[x]. Then g(t)s — p(t)=0, and t is algebraic over L. Let m be
the minimal polynomial of ¢ over L. We can consider m as an element of
K(t)[x]; by Theorem 3.11, there exists § in K(f) such that fm= f, where
f=alt)+a;(Ox+- - +a,(t)x"
is a primitive polynomial in K[¢][x]. Note that
n=degree m=[K(t):L].
Since m is monic, f=a,(t) and the terms a,(t)/a,(t) are all in L; on the other
hand, they are not all in K, since t is transcendental over K. There therefore
exists i, with 0<<i<n, such that u=a{t)/a,(f)e L\K. We can write u as
g(t)/h(t) where g and h are relatively prime polynomials in K[t].
Let r=max (degree g, degree h).
Then [K(t): K(u)] =r (Exercise 5.3). As K(u) = L, this means that r>n. It
also means that it is sufficient to show that r<n, for then it follows that
L=K(u).
We now consider the expression

1= g(Dh(x) — h(D)g(x).
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As g and h are relatively prime, [ is non-zero. Now (h(£)) "'l e L[x], and
(#(t)) "'l has t as a root: thus m divides (h(z)) ~ !l in L[x]. This implies that f
divides /in K(t)[x]. As f is primitive in K[t][x]. It follows from Corollary 1
to Theorem 3.13 that f divides / in K[t][x]. Thus there exists j in K[t][x]
such that /= fj.

We can consider f, ! and j either as elements of K[t][x] or as elements of
K[x]1[t]: let us denote the degree in x by deg, and the degree in t by deg,.

Now deg,()<r and deg,(f)=r: since f=Ij, deg,(l)=deg,(f)=r and
deg,(j)=0. In other words, we can consider j as an element of K[x]. In
particular, this means that j is primitive in K[¢][x], and so by Theorem 3.12
1= fjis primitive in K[t][x]. As lis skew-symmetric in ¢ and x, this implies
that / is primitive in K[x][¢]. But je K[x], and j divides /; thus j must be a
unit in K[x], and so je K. Consequently

n=deg,(f)=deg () =deg(l)=deg,(f)>r,

and the theorem is proved.

Does Liiroth’s theorem extend to purely transcendental extensions of
higher transcendence degree? It can be shown that if t; and ¢, are
algebraically independent over an algebraically closed field K, and M is a
subfield of K(t,, t,) for which K(t,,,):M is finite and separable, then M is
purely transcendental over K. It can also be shown that a corresponding
result does not hold for extensions of transcendence degree 3. These results
involve polynomials in several variables in a more fundamental way than
does Liiroth’s theorem. The results really belong to algebraic geometry:
they are discussed, for example, in the book by Hartshorne.!

Exercises

18.6 Suppose that K(x, y):K is an extension with x transcendental over
K and x%+ y?=1. Show that K(x, y)= K(u), where u=(1+y)/x.

18.7 Suppose that n>3, that K(x, y):K is an extension with x
transcendental over K and x"+ y"=1 and that char K does not
divide n. Suppose if possible that K(x, y)=s.

(i) Show that there are relatively prime polynomials f,g and & in
K[x] such that max (degree f,degreeg,degreeh)>1 and
f'l + g'l = hn.

(i)) Show that
f""!|(hDg—gDh) and g"~*|(hDf — fDh),
and show (by considering degrees) that this is not possible.

! R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
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Some further topics

In this chapter, we shall consider three further topics. Each has independent
interest, and also shows how the theory that we have developed so far can
be applied.

19.1 Generic polynomials
When we considered cubic polynomials, we saw that a variety of

possibilities can arise. Some depend on the original field K: whether or not
K contains cube roots of unity, for example. Others depend on special
relationships between the coefficients: these can confuse the issue, and it is
sensible to consider polynomials where this cannot happen.

Suppose that K is a field. Let K(a,,...,a,):K be an extension such that
{ay,...,a,} is algebraically independent over K. Then the generic (monic)
polynomial of degree n over K is the polynomial

x"—a x" "1+ +(=1)q,

Note that this is an element of K(a,, . . ., a,)[x], and not an element of K[x].
Note also that, since {a;, .. ., a,} is algebraically independent over K, there
is no relationship between the coefficients: they are quite general.

We can also consider polynomials with general roots. Let K(t,,...,t,):K
be another extension such that {¢,,.. ., t,} is algebraically independent over
K. Then we consider the polynomial

f=0—t)...(x—t,).

Again, this is an element of K(t,,. . ., t,)[x], and not an element of K[x]. We
can write

f=x—=t)...(x—t)=x"—s5;x""1+ - (=1,
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where
Sl=t1+"'+t",
$;= Z it
1<i<jgn
Sy=tits... 1,
The expressions s,,.. ., s,, considered as elements of K[t,,...,¢,], are the .

elementary symmetric polynomials in n variables.

Suppose now that o is a permutation of {1,...,n}. Then o determines an
automorphism of K(t,,...,t,):
[y, .0 t) then o(a)= Sy - s ta(n))'
glty,.. ..t 9oty - - -5 Loy
Let G be the group of all such automorphisms, and let L be the fixed field of
G. Then, by Theorem 11.3, K{(¢,, . . ., t,): L is a Galois extension, with Galois
group G.

if a=

Theorem 19.1 L=K(s,,...,s,).

Proof. We can consider f as an element of K(s,,...,s,)[x]. Then
K(t,,...,t,):K(s,,...,8,) is a splitting field extension for f, and so
[K(t,,....t):K(sy,...,8)]<n!, by Theorem 7.3. But Cclearly
K(sy,...,s,)=L and [K(t,,...,t,):L]=n!: it therefore follows that L=
K(sg,.. 58,

Corollary f is irreducible over K(sy,...,s,) and I';=ZX,, the group of
permutations of {1,...,n}.

Theorem 19.2 The elementary symmetric polynomials s,,...,s, are
algebraically independent over K.
Proof. The transcendence degree of K(t,,...,t,):K is n. As K(ty,...,t,):
K(sy,...,s,) is algebraic, {s,,...,s,} contains a transcendence basis for
K(t,,...,t,) over K, by Theorem 18.5. This must have n elements, by the
corollary to Theorem 18.6, and so it must be the whole of {s,,...,s,}.
By Theorem 18.2, this means that there is an isomorphism of K(a,,. .., q,)
onto K(sy,...,s,), which sends g; to s; (for 1<i<n) and which sends the
generic polynomial x"—a;x"+---+(—1)"a, to f. Thus f has the same
properties as the generic polynomial. Summing up:

Theorem 19.3 The generic polynomial

x"—ax" 14+ (—Va,
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is irreducible over K(a,,...,a,). It is separable, and its Galois group is
isomorphic to Z,. It is solvable by radicals if and only if n<4.

We say that a polynomial f in K[t,,...,t,] is symmetric if o(f)= f for
each ¢ in G. It follows from Theorem 19.1 that if f is a symmetric
polynomial then f can be expressed as a rational expression in s,,...,,.
This is clearly not a satisfactory result: let us improve on it.

Let us set My=K(sy,...,s,) and for 1<j<n let

Mj=M0(t1,. . "tj)=Mj—l(tj)‘
Thus

K(ty,...,t)=M_;M,_,:...:Ms=K(sy,...,8,)
Now let

J n
f_,=l—[(x—t,) a.nd g,)= l_[ (x_tl').
i=1 i=j+1

Then f;eK[ty,...,t;][x] and f;g;€K[s,,...,s,1[x] so that, by Lemma
15.2,

g;€K[sy,.. 8, b, .., 5] [x] = M;[x].
Now ¢;,, is a root of g; and so

(M :MI=[Mt;,,):M;I<n—j.
But [M,:M 1=[K(t,,...,t):K(sy,...,s,)}=n!, and so it follows from the
tower laws that [M;,,:M;]=n—j, for 0<j<n. In particular, this means
that g; is the minimal polynomial of ¢;,; over M}, and that

-j—1
19tj+1" LR t_’;+{

is a basis for M; ., over M.
We now show inductively that if f € K[s,,..., 5, t;,...,t;] then f can be
written uniquely in the form

f=2 P .t
whereeach p;, . ; isinK[sy,...,s,],and summation is over all multi-indices
iy,...,i;, where 0<iy <n—k for 1<k <j. The result is trivially true for j=0.
Suppose that it is true for jand that f e K[t,,...,t;,,]. As g;is the mininTaI
polynomialfort;,, over M;and g;eK[s,,..., s, t;,. - ., t;][x], wecan write
fii=aotaity + a5
where the coefficients g, are in K[sy,..., s, t,...,t;]. Substituting for t;?;{
in f wherever it occurs, and repeating the procedure if necessary, it follows
that we can write
S=bo+bity +- - +b, ;7!
where the coefficients b, are in K[sy,...,S,1t,...,t;]; further as I,
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tir1s---» 11547 1 is a basis for M, ; over M ;» this expression is unique. The
result now follows, by applying the inductive hypothesis to the coefficients
by.

As an immediate consequence, we have

Theorem 19.4 If f is a symmetric polynomial in K[t,,...,t,], there exists a
unique g in K[x,,...,x,] such that
S, t)=9g(se,. .-, Sy
This result can also be proved directly by elementary methods (Exercise
19.2). Note also that if f is a symmetric polynomial in Z[t,,...,t,] then
geZ[X15- . Xy

Corollary Suppose that

h=x"—a;x""'+..-+(—1)a,
is a monic polynomial in K[x], with roots a,...,a, in some splitting field
extension. If f is a symmetric polynomial in t,,...,t, then

flg,....a)=g(a,,...,a,)
(where g is the polynomial of the theorem).

Exercises

19.1 Let G; be the subgroup of G which fixes ¢,,.. ., ;. Show that M is
the fixed field of G;.

19.2 Suppose that feK[t,,...,t,]. Suppose that atfti...t% and
bt ...ty are two terms in f (with k; >0, [;>0). There is a least
integer j such that k;# ;. We say that br's . . . tiy follows at}r ...t if
l;>k;, for this j. This defines a total order on the terms of f (the
lexicographic order). The last term is called the principal term of f.

Suppose that fis symmetric and has principal term at' ...t

(i) Show that k, >k, >--- >k,

(ii) Show that as’ =% . . . sk %k has the same principal term as
f

(i) Show that f can be written as F(sq,...,s,), where
FeK[xq,...,X%,]

(iv) Show that the expression in (iii) is unique.

192  The normal basis theorem
Suppose that L:K is a Galois extension, with Galois group G=
{64,...,0,}. We know that L is an n-dimensional vector space over K. The
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normal basis theorem asserts that we can find a basis for L over K in terms
of g,,...,0,
We begin by establishing a result concerning infinite integral domains.

Theorem 19.5 Suppose that R is an infinite subset of an integral domain S
and that f is a non-zero element of S[x,,. . ., x,]. Then there exists (r,...,r,)
in R" such that fir,,...,r,)#0.

Proof. We prove this by induction on n. In the case where n=1, f has only
finitely many roots in F, the field of fractions of S, and so f has only finitely
many roots in S: since R is infinite, there exists r in R such that f{(r)#0.

Suppose that the result is true for n—1. S[x,] is an infinite integral
domain, and we can consider f as a non-zero element of S[x,1[x,,...,x,].
By the inductive hypothesis, there exist r,,...,r, in R such that
f(xy,73,...,1,) is a non-zero element of S[x,]; by the case where n= 1, there
exists r, in R such that f{(r,,...,r,)#0.

We now come to the normal basis theorem. Because we use Theorem 19.5
in the proof, we shall prove this only for infinite fields. The result is true for
extensions L:K where L and K are finite, but the proof, which exploits the
fact that such an extension is cyclic, involves properties of endomorphisms
of vector spaces which it is unreasonable either to expect the reader to know
or to develop here.

Theorem 19.6 (The normal basis theorem) Suppose that K is an infinite
field, and that L:K is a Galois extension, with Galois group G={0,...,0,}.
Then there exists | in L such that (6,()),..., 0,()) is a basis for L over K.
Proof. By relabelling G if necessary, we can suppose that ¢, is the identity.
Let us define p(i, j) by the formula
0:0;=0p,j)

for 1<ign, 1<j<n. Let x,,..., x, be indeterminates and let M be the n x n
matrix (x,q ;)-1,=1 With entries in K[x,,...,x,]. Let f=det M. Then
f€K[x,,...,x,],and f is non-zero, since x,; occurs once in each row and
once in each column, and so the coefficient of x} is 1 or —1.

Now let (by,...,b,) be a basis for L over K. By Theorem 11.2 the n
trajectories

(T(bj));= 1= ((o'i(bj))?= 1)3!= 1
are linearly independent over L in L' in other words the nxn matrix
(oib))i=1,j- is invertible; let C=(c;;) be its inverse.
We now set

gxg,. s X)) =fX; 01(b)x;s . . ., X 0ulb))x)).
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Since
f(Xl, .o .,x“)=g(2j Cljxi, .o "Zj canj),
g is a non-zero element of L[x,,...,x,]. By Theorem 19.5 this means that
there exist ky,...,k, in K such that g(k,,....k,)#0. We set
I=kby+---+k,b, Then
0#g(ky, ..., kn)=f(2j Ul(bj)kja X Un(bj)kj)
=ﬂal(l)a LERE) an(l))
=det((g,4(1))) = det({a (o (1))

This means that the matrix (oo (1)) is invertible, and so by Theorem 11.2
(g,(),...,0,() is a basis for L over K.

Exercise

19.3 Show that the primitive nth roots of unity over Q form a normal
basis for the splitting field of x" — 1 over Q if and only if n has no
repeated prime factors.

19.3  Constructing regular polygons
We end this chapter by considering ruler-and-compass
constructions again. We consider the following problem: given an integer
n>2, can we construct a regular polygon with n sides of unit length, using
ruler and compasses alone? Let us say that an integer n is possible if this can
be done. Using the results of Chapter 6 (and its exercises) it should be clear
that 3,4, 5, 6,8 and 10 are possible, while 7 and 9 are not. Note that if n is
possible then so is 2n, for we can certainly bisect angles.
Suppose that » is an integer greater than 2. We set 0,=2x/n,
x,=cosf,, y,=sinf, & =cos0,+isinf,=e".
The complex number ¢, is a primitive nth root of unity in C. It is clear that
(x,., yn) is constructible if and only if we can construct an angle 9,,, and it is
equally clear that if we can construct angles 8 and ¢ then we can construct
angles 8+ ¢ and |0 — ¢|. Suppose that m and n are possible and that m and n
are relatively prime. Then there exist integers a and b such thatam+bn=1;
multiplying by 2z/mn, it follows that a6, + b6, =8, so that mn is possible.
It is trivially true that if / is possible then so are all its divisors: in particular,
if mn is possible, so are m and n. We therefore have the following:

-Theorem 19.7 Suppose that n=2'p$1 ... p%, where p, ... p, are distinct odd
primes. Then n is possible if and only if p? is possible for 1<b<a;, 1<i<r.

This result reduces the problem to determining when p® is possible, when
p is an odd prime._
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Theorem 19.8 Suppose that p is an odd prime. Then n=p® is possible if and
only if b=1 and p is of the form 2*+1.

Proof. First suppose that n is possible. Then (x,, y,) is constructible, and so
[Q(x,, ¥,):Q]=2" for some r, by Theorem 6.1. By the tower law,

[Q(xpy Yo 1): Q] = [Q(x,y, Vs 1): QX Ya) L Q (X, ¥): Q]

_r+t.
=2t

as £,eQ(x,, y,,1), [Q(e,):Q] =2* for some s.

Now, if n=p® is possible for some b>2, then m= p? is possible, and so
[Q(e,,):Q] =2*, for some s. There is one primitive first root of unity, and p— 1
primitive pth roots of unity, and so there are p?> — p= p(p — 1) primitive mth
roots of unity. Thus the cyclotomic polynomial &,, has degree p(p— 1). But
@, is irreducible over Q (Theorem 15.3), and is the minimal polynomial for
&m over Q, so [Q(s,,):Q]=p(p—1). This is not of the form 2°: we conclude
that b=1and that n=p. But @, has degree p—1,and so pis a prime of the
form 2°+ 1.

Conversely suppose that n=2°+ 1is prime. Then [Q(g,): @] =25, Q(e,): Q
is a splitting field extension for &,, and G =I"(Q(e,): Q) is cyclic of degree 2°,
by the corollary to Theorem 15.4. Let ¢ be a generator for G. Then, if
0<t<s, the group G, generated by ¢% ' has order 2!, and so there are
intermediate groups

{e}=G,=G,_, =---=Go=G, with |G;/G,;_,| =2, for 1<j<s.
Let L; be the fixed field for G;. Then
Q)=Lg:L,_y:...:Le=Q
is a tower of fields, and [L;:L;_,]1=2 for 1<j<s.
We shall show that if ze Q(¢,) and z=x +iy then (x, y) is constructible.
We use induction on j. The result is true for elements of L,= Q. Suppose

that it holds for all elements of L;_; and that a=a; +ix, e L;\L;_,. Then
the minimal polynomial m, for « over L;_, is a quadratic in L,~1[x]

m,=x>+2bx +c.

Thus a= —b+v, where v’=p=b*—ceL;_,. Let us set b=>b, +ib,, v=
v, +iv, and pu=p, +iu,=re’. By the inductive hypothesis, (u,,u,) is
constructible: from this we can successively construct (r,0), (r!/2,0) and
(r'/? cos(6/2),r'/*sin(6/2)) (since we can bisect angles). As (v;,v,)=
+(r'/2 cos(6/2), r*/? sin(6/2)) and as (b, b,) is constructible, by the inductive
hypothesis, this means that (a,,«,) is constructible. This establishes the
induction. This means that (x,, y,) is constructible (where ¢, = x,, +1y,) and
so n is possible.

Primes of the form 2*+1 are known as Fermat primes. If 2"+1 isa
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Fermat prime, k must be of the form 2': for if k =st, with s odd and greater
than 1,

26 1=2 4 1=(2"+ )21~ D -2~ 4 ... 1),
The only known Fermat primes are 3, 5, 17, 257 and 65537, which

correspond to k=0, 1,2, 3 and 4. It has been shown, using computers, that if
any other Fermat primes exist they must be larger than 104°°°°, To sum up:

Theorem 19.9 (Gauss) It is possible to construct a regular polygon with n
sides if and only if n is of the form2'p, ... p,, wheret>0and p,,...,p, are
distinct Fermat primes.
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The calculation of Galois groups

In Chapter 17, we saw that (provided that certain assumptions are made
about the character of the underlying field) a polynomial is solvable by
radicals if and only if its Galois group is soluble. This result raises many
questions. Given an irreducible separable polynomial in K[x], can its
Galois group be determined? Given an integer n, what are the possible
Galois groups of an irreducible separable polynomial of degree nin K[x]?
Given a finite group G and a field K, does there exist an irreducible
separable polynomial in K[x] whose Galois group is isomorphic to G? In
particular, what are the answers when K is the field Q of rational numbers?

20.1 A procedure for determining the Galois group of a polynomial
Suppose that K is a field. Let ¢,,..., t,, x4,..., X, be indeterminates. If 6 € Z,,,
let o, denote the permutation of ¢,,.. ., t, which sends ¢; to ¢, for 1<i<n,
and let o, denote the permutation of x,,.. ., x, which sends x; to x, for
1<i<n. We first consider the polynomial

P= I_[ (y—(tlxa(1)+ T +tnxa(n)))

geX,

= l_l (y—(t,,(l)xl + s + ta(,,)x")).

aeZ,

Grouping the terms in y together, we can write
n!
P= Z ijl,
j=0
with
Cj=ZpfmXid ... Xk,

where each f,,isin K[t,,...,t,] and the summation is taken over all multi-
indices m=(i,,...,i,) with ;>0 for 1<k<n and Yj_, i,=n!—j.
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Now ¢,(P)=P, and so o,f,)=f. for each m and each ¢ in X,. By
Theorem 19.4 we can write

fm=gm(sl,‘ . -,S")
where s; is the jth elementary symmetric polynomial in t,,...,, and
gm€K[sy,...,8,]. Thus

n!

P= Z (ZGm(S1s- - o SOXAL L. X))

i=0
further, given n, it is possible to calculate the polynomials g,, explicitly.
Now suppose that

f=x"—a;x" '+ +(—1)a,
is a monic polynomial in K[x] which has distinct roots «;,...,«, in a
splitting field extension L. We set f=o;x; +--- +a,x,. If 6 € Z,, we set

ax(ﬂ)=a1xu(1)+ e +anxa(n)

and o,(f)=a,q)X; + -+ + %X, =05 '(B). Note that, since f has distinct
roots, o,(B)#1,(p) if c#1. We consider the polynomial

F=T] (y=o,B)=[] (y—0.(B).

oeX, oel,

We obtain F by substituting o; for ¢; in P: thus

F= ¥ (Zuglars a5y

j=0
and so FeK[y,x;,...,X,]

As K[y, x4,...,x,] is a unique factorization domain (Corollary 2 to
Theorem 3.13), we can write F=F, ... F,, where each F; is irreducible in
K[y,xy,...,x,]. Considering the F; as elements of L[y, xl,. . > X,], we can
write each F; as

Fi=T1 (y—0.(B)
oeAd;
where A4,,..., A, is a partition of Z,. By labelling the F; appropriately, we
can suppose that the identity permutation is in A,: thus y — f divides F, in
LIy, x4 . %,
Now suppose that ¢ € 2,. Then

o.F=(0.F\)0.F,)...(0,F).
But ¢, F=F. Thus ¢ induces a permutation of the irreducible factors
Fy,...,F; Let

G={o:0,F=F};

it is clear that G is a subgroup of Z,.
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Theorem 20.1 The group G is isomorphic to the Galois group I'y(f).
Proof. First note that
Ay={o:y—o,p divides F, in L[y, x,,...,x,]}
={o:y—p divides 6;'F; in L[y, x,,...,x,]}
={o:6,'F,=F,}=G.
Now let
H= [ (y=a.B)= [] (y—o.B)).
oeZk(f) oeZx(f)
IfteXy(f),tH=H,so HeK[y,x,,...,x,]. H divides Fin L[y, x,,..., X,]
and so H divides F in L{x,,. .., x,)[ y]. Thus H divides F in K(x4,. .., x,)[ y]
(Lemma 15.2) and so H divides F in K[y, x,,...,x,] (Corollary 1 of
Theorem 3.13). This means that we can write H as a product of certain of the
irreducible factors F,,..., F;of F. As y—f divides Hin L[y, x,,...,x,], F;
must be one of these factors: thus F, divides H in K[y, x,,...,x,], and so
GeIk(f). ‘
Conversely, if tel'k(f)
Tx(F1)= l—[ (y_txax(ﬁ))

g€A,

= H (y’ru—lo-x(ﬁ))

o€A,

=<' [T (y—auB) =1 (F.

oe4;
But F,eK[y,x,,...,x,], and so 1, }(F,)=F,. Thus 7eG and so I'c(f)<G.
This completes the proof. Notice that if F, is another irreducible factor of
F, there exists 7 in X, such that 7(F,)=F,, and
1Gt ' ={oc:0(F)=F};
thus each of the groups {¢:6,(F;)=F,} is isomorphic to I'y(f).
Suppose now that g is a polynomial in Z[x]. By Theorem 5.1, there is an
algorithm for expressing g as a product of irreducible factors
g=g1...95.
Let f=g,...g;. Then I'g(f)=Tu(g), and f has distinct roots in a splitting
field. We can calculate the polynomial F. FeZ[y, x,,...,x,]- Now it is a
straightforward matter to extend the argument of Theorem 5.1 to show that
an algorithm exists to express F as a product of irreducible factors in
Z[y,x,,-..,x,].- Having found an irreducible factor F,, it remains to work
through the elements of X, to determine which of them fix F,. Thus an
algorithm exists for calculating the Galois group of an element of Z[x].
This result is theoretically important, but the algorithm is much too
complicated to be of any practical use. As we shall see when we consider the
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quintic, though, it does suggest ways of deciding between various
possibilities. It also leads on to the next result, which is of great practical
value.

Theorem 20.2 Suppose that f is a monic polynomial in Z[x] and that pis a
prime. Let f be the corresponding element of Z [x].If f has distinct rootsina
splitting field extension L, then the cyclic group T Zp(f) is isomorphic to a
subgroup of I'g(f).
Proof. Suppose that

f=x"—ax"" '+ +(—1)a,
Let ay,...,a, be roots of f in a splitting field extension L:Q, let
p=oyx;+ - +a,x, and let

F=T[p—-0.p).
oel,

Similarlylety,, ..., y,be rootsof f in a splitting field extension M :Z,and let
O=p.%y+ -+ +7,X,. As

F=Y (Zugmlay,...,a)x ... xp)y,
i=o

FeZ[y,x,,...,x,] and

F=]] (y—0,9).

ceZ,

Let
Fi= [1 0-af. Gi= [] 6-a9).
aelg(f) ael'z (f)
By Theorem 20.1, F, is an irreducible factor of F in Q[ y, x4, ..., x,] and G,
is an irreducible factor of F in Z,[ Y, X4,...,%,). F, is a (not necessarily
irreducible) factor of Fin Z,[ y, x,,. .., x,] and y — d divides both G, and F,
in M[y, xy,...,x,], and so G, divides

Fi= [] 0-0.)
oelg(f)

in Z[y,xy,...,Xx,]- This means that I'zp(f)gl'u(f).

20.2  The soluble transitive subgroups of X,

Suppose that f is an irreducible polynomial of prime degree p in
K[x] (where char K #p). The Galois group I'g(f) is isomorphic to a
transitive subgroup of Z,,. f is solvable by radicals if and only if I'x(f) is
soluble. It is therefore desirable to know what the soluble transitive
subgroups of X, are.



20.2. The soluble transitive subgroups of Z, 159

We can consider 2, as acting on a set S with p elements. Suppose that G is
a transitive subgroup of X, and that H is a normal subgroup of G other than
{e}. We shall show that H is also a transitive subgroup of Z,. If x e, let

Oy(x)={ox:x€H}

be the orbit of x under H. The relation ‘x ~ x’ if there exists ¢ in H such that
ox=x" is an equivalence relation, and Oy(x) is the equivalence class of x
under this relation. Thus any two orbits are either identical or disjoint. If x
and yarein S, then since G is transitive there exists t in G such that tx=y. If
x'=0x € 0y(x) then

X' =tox=1t01 " ly

so that, since tot ~! e H, 1x’ € O4(y). Thus 7 is a one-one mapping of Op(x)
into O4(y). Similarly T ~! is a one—one mapping of Oy(y) into Og(x), and so
O4(x) and Og(y) have the same number of elements. Not every orbit is a
one-point set, since H # {e}. Since p is a prime, it follows that O(x)=S for
each x in S: in other words, H is a transitive subgroup of X,

Suppose now that G is a soluble transitive subgroup of X, and that

{e}=6G,=G,_1=---=Gy=G

is a finite series of subgroups such that G;< G;_, for 1<i<n, G;_,/G; is
cyclic for 1<i<nand G, _, # {e}. Repeated application of the above result
shows that G, _  is a cyclic transitive subgroup of X . G, _ ; is therefore cyclic
of order p. Let ¢ be a generator of G,_,. We can write S as

§={0,1,2,...,p—1}
in such a way that o(j)=j + 1 (mod p). It will now be convenient to identify

S with the finite field Z,,.
It is easy to verify that the set of affine transformations of Z,, of the form

Ta,n(k)=ak+b,

where aeZ} and beZ, forms a subgroup W of X, of order p(p—1). The
mapping 7, — a is a homomorphism of W onto the multiplicative group
7} withkernel G, _, = {4 ;,:b€Z,}. Thus G, _, is a normal subgroup of W;
the group G,,_, is cyclic of order p and W/G, _, is cyclic of order p—1, so
that W is soluble.

We shall show that G < W. Suppose that G;< W, and that 1€ G;_,. Then
1ot~ ! € G; (where, as before, a(k)=k+ 1 (mod p)) and so 61! =1, for
some a and b. Now zot ~ ! has order p, and so it permutes the p pointsof Z,,
cyclically: thus the equation

1ot Y (x)=ax+b=x

has no solution in Z,; this happens if and only if a= 1 and b#0. In other
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words Tt~ ! is a non-zero element of G,_,. Thus if ke Z,,
1k + 1)=ta(k)=101 " '1(k)=1(k) + b,
and so t(k)=bk+1(0). Thus teW, and G;_; = W. Thus it follows by

induction that G=G,< W.
To sum up:

Theorem 20.3 Suppose that G is a soluble transitive subgroup of Z,(where p
is a prime). G contains a normal transitive cyclic subgroup T of order p, and
G/T is cyclic, with order dividing p — 1. Further, there exists a subgroup F of
the cyclic group Z¥ such that G is isomorphic to the group of affine
transformations {t, :a€Z,, beF} of Z,, where 1, ,(k)=ak+b.

Recall that in Section 7.3 we showed that the degree of a splitting field
extension for x?—2 over Q is p(p — 1), and so the Galois group of x?—2 is
isomorphic to the group W. It is remarkable that a polynomial of such a
simple form has a Galois group which is as large as possible.

Exercises

20.1 The polynomial f=x"+9x2+7 is irreducible over Q (this can
be checked, using Theorem 5.1). Let f be the corresponding
polynomial in Z,[x]. Show that f splits over Z as the product of
an irreducible quartic and three linear factors (use Exercise 15.6)
and show that f is not solvable by radicals.

20.2 Show that if G is a soluble transitive subgroup of X, (where pis a
prime) then every element of G other than the identity fixes at most
one point.

20.3 Show that if f is an irreducible polynomial in Q[x] of odd prime
degree p which is solvable by radicals than either all the roots of f
are real or f has exactly one real root. Show that if p=4k + 3 then
the discriminant can be used to distinguish the two possibilities.
What happens if p=4k+1?

20.4 This question needs the following results from group theory. If G is
a group of order pq, where pis a prime which does not divide g then
G has a subgroup of order p.

Let G be a transitive subgroup of X, (where p is a prime).

(i) Show that |GI = pq, where p does not divide q. (Hint: Consider
the subgroups H of G which fixes a certain point and consider the
index of H in G.)

(ii) Show that if G has at least two subgroups of order p then there



20.3. The Galois group of a quintic 161

exists an element of G, other than the identity, which fixes two
points and so G is not soluble.

(iii) Show that if G has exactly one subgroup K of order p, then
K<1G and G is soluble.

20.5 Suppose that f is an irreducible polynomial of prime degree p in
K[x],and thatchar K # p. Let L:K be a splitting field extension for
/. Show that f is solvable by radicals if and only if whenever o and
B are distinct roots of f then L=K(a, f).

20.3  The Galois group of a quintic
Let us now consider the possible Galois groups of irreducible
quintics. Suppose that f is an irreducible separable quintic in K[x]. If f is
solvable by radicals then, by the results above, I'y(f) is isomorphic either to
W, which has order 20, or to D, 4, the group of rotations and reflections of a
regular pentagon, which has order 10, or to the cyclic group Z of order 5. If
f is not solvable by radicals then I'y(f) is isomorphic to the alternating
group A or the full symmetric group Z..
Let us list some examples of irreducible quintic polynomials in Z[x],
together with their Galois groups, to show that all possibilities can occur:

(@) x5 +x*—4x3-3x243x+1 Zs
(b) x5 —5x+12 Dy,
© x5—2 | w
(d) x34+20x+16 As
(&) x*—4x+2 X

We have already discussed examples (c) and (e). Example (a) is obtained
by considering a primitive 11th root of unity, a say. « has minimal
polynomial Y12, x", which has cyclic Galois group Z,,. This has a
subgroup of order 2 and the fixed field of this has Galois group Z 5. The fixed
field is generated by a +a !, and example (a) is the minimal polynomial of
this.

We now turn to example (d). This has discriminant 2'¢ 5° (use Exercise
14.3), so that its Galois group is contained in A5. In Z, the corresponding
polynomial is

(x+2)(x+3) (x> +2x*>—-2x—2)

and the cubic is irreducible. It follows from Theorem 20.2 that the Galois
group of example (d) contains a cyclic subgroup of order 3, and so it must be
As.
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Finally we consider example (b). This has discriminant 22 55, and in Z,

the corresponding polynomial factorizes as
x(x2+x—1)(xZ—x—1)

and so has Galois group Z,. Using Theorem 20.2 again, we see that this
means that the polynomial f of example (b) has Galois group D, or As.
How can one distinguish between these possibilities? Use of Theorem 20.1
would involve considering polynomials of degree 120, which is clearly
impracticable. One way to proceed is the following. Let «,,...,a5 be the
roots of the polynomial in a splitting field L. We consider the ten elements
a;+a;of L, with 1<i<j<5.Itis easy to verify that these are distinct, so that
the polynomial

g= H (x—(“i‘*‘“j))

1<i<j<$5
has ten distinct roots. g is invariant under I ( f), and so g € Q[ x]. It is clear
that g splits over L. Since

5
oy =( Y “i)“(“z+“3)—(“4+“5)

i=1
and since similar equations are satisfied by a,, a5, a, and o5 it follows that
L:Q is a splitting field extension for g. Suppose that f had Galois group 4,.
Then the Galois group would act transitively on the roots of g, and so g
would be irreducible. Using a computer it can be shown that this is not so.
I am grateful to Leonard Soicher for showing me examples (b) and (d).

Exercise

20.6 Suppose that f is a quintic in Q[x] whose Galois group contains
D;,. Show that the ten elements a;+a; (1<i<j<J5) are distinct
(where ay,...,as are the roots of f in C).

204 Concluding remarks
The examples of the previous section show that there are
irreducible quintics in @[x] with all possible Galois groups. This raises the
question: given a group G, does there exist an irreducible polynomial in
Q[x] which has G as its Galois group? This is an extremely difficult
problem which has not yet been solved. In 1954, Safarevich showed that the
answer is ‘Yes’ when G is a soluble group.
Galois theory has a long and distinguished history: nevertheless, many
interesting problems remain.
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