
NAProject 2018 Module IV: Exercises

Exercise 1. Let f(X) ∈ Q[X] be such that Disc(f) = 0. Prove that if deg(f) = 3, then all
the roots of f(X) are in Q. Show with an example, that this is not necessarily true if f(X)
has degree 4.

SOLUTION: Let f(X) = aX3 + bX2 + cX + d ∈ Q[X]. If Disc(f) = 0, then f(X) has at
least two equal roots, and f(X) = a · (X − α)2(X − β), with α, β ∈ C.
If α = β, then

aX3 + bX2 + cX + d = a · (X − α)3 = a(X3 − 3αX2 + 3α2X − α3).

Comparing coefficients we get α = b
3a ∈ Q and all three roots of f(X) are in Q.

If α 6= β, we have two possibilities. Either α ∈ Q, in which case β also in Q and we are
done, or α 6∈ Q. Suppose, hence, that α 6∈ Q, and let g(X) be its minimal polynomial over
Q, which be separable and of degree at least 2. Then both g(X) and g(X)2 must divide
f(X) which is impossible since 4 > 3.

We conclude that a polynomial in Q[X] of degree 3 and discriminant 0 has all of its roots
in Q. This is not the case if deg(f) = 4, since the polynomial f(X) = (X2 +X + 1)2 has no
root in Q and has discriminant 0. �

Exercise 2. Let f(X) = X4 + 1 ∈ Q(X).
(a) Compute the splitting field Qf and its Galois group Gf .
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√
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(b) Describe explicitly the inmersion of Gf into S4.
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Gf ↪→ S4

ρ 7→ (12)(34)
τ 7→ (13)(24)

⇒ Gf ' V.

(c) Describe explicitly the Galois correspondence between the subgroups of Gf and the
subfields of Qf containing Q.

SOLUTION:



{H < G} ↔ {Q ⊂M ⊂ Q(
√

2, i)}
G ↔ Q
〈ρ〉 ↔ Q[i]
〈τ〉 ↔ Q[

√
2]

〈ρτ〉 ↔ Q[
√

2, i]
{Id.} ↔ Q(

√
2, i)

�

Exercise 3. Let f(X) = X4 − 2 ∈ Q(X).

(a) Compute its splitting field Qf , is Galois group Gf and write explicitly the Galois corre-
spondence between the subgroups of Gf and the subfields of Qf containing Q.

SOLUTION: We have f(X) = (X − 4
√

2)(X − i 4
√

2)(X + 4
√

2)(X + i 4
√

2). Consequently
Q(f) = Q( 4

√
2, i), and Gf = 〈ρ, τ〉, with ρ( 4

√
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We let α1 = 4
√

2, α2 = i 4
√

2, α3 = − 4
√

2, α4 = −i 4
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2. Then,

ρ(α1) = α2, ρ(α2) = α3, ρ(α3) = α4, ρ(α4 = α1,

τ(α1) = α1, τ(α2) = α4, τ(α3) = α3, τ(α4 = α,

and so
Gf ↪→ S4

ρ 7→ (1234)
τ 7→ (23)

⇒ Gf ' D4.

Finally, the correspondence

{H < G} ↔ {Q ⊂M ⊂ Q( 4
√

2, i) = K}

is given by the following diagrams

I = {Id.}

↙ ↙ ↓ ↘ ↘

D = 〈ρ2τ〉 B = 〈τ〉 A = 〈ρ2〉 C = 〈ρτ〉 E = 〈ρ3τ〉

↘ ↓ ↙ ↓ ↘ ↓ ↙

T = 〈ρ2, τ〉 S = 〈ρ〉 U = 〈ρ2, ρτ〉

↘ ↓ ↙

G = 〈ρ, τ〉

and
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↗ ↗ ↑ ↖ ↖
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√
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√
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(b) Compute the cubic resolvent of f , R(X) ∈ Q[X]. Find its splitting field M = QR and
its Galois group GR.



SOLUTION: R(X) = X(X2 + 8) = (X − 2
√

2i)(X + 2
√

2i) ∈ C[X] and, hence, M = Q[i
√

2].
Since the minimal polinomial of i

√
2 is X2+2, GR = 〈φ〉 ' (12) ⊂ S2, with φ(i

√
2) = −i

√
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(c) Verify that M ⊂ Q and compute Gal(Qf/M) ⊂ Gf .

SOLUTION: Clearly, M = Q[i
√

2] ⊂ Q[ 4
√

2, i]. In the tables of the Galois correspondence we
see that Gal(Qf/M) = U = 〈ρ2, ρτ〉.

(d) Compute the discriminants of f(X) and R(X).

SOLUTION: Disc(f) = Disc(R) = −16 · 2 · 64 = −2048. �

Exercise 4. Compute the Galois group of the following cubic polynomials:

f(X) = X3 −X − 1, g(X) = X3 − 3X − 1

SOLUTION: Disc(X3 −X − 1) = −23⇒ Gf = S3; Disc(X3 − 3X − 1) = 229⇒ Gg = A3.
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