NAProject 2018

Exercise 1. Let $f(X) \in \mathbb{Q}[X]$ be such that Disc(f) = 0. Prove that if $\deg(f) = 3$, then all the roots of f(X) are in \mathbb{Q} . Show with an example, that this is not necessarily true if f(X) has degree 4.

Exercise 2. Let $f(X) = X^4 + 1 \in \mathbb{Q}(X)$.

- (a) Compute the splitting field \mathbb{Q}_f and its Galois group G_f .
- (b) Describe explicitly the innersion of G_f into S_4 .
- (c) Describe explicitly the Galois correspondence between the subgroups of G_f and the subfields of \mathbb{Q}_f containing \mathbb{Q} .

Exercise 3. Let $f(X) = X^4 - 2 \in \mathbb{Q}(X)$.

- (a) Compute its splitting field \mathbb{Q}_f , its Galois group G_f in S_4 and write explicitly the Galois correspondence between the subgroups of G_f and the subfields of \mathbb{Q}_f containing \mathbb{Q} .
- (b) Compute the cubic resolvent of f, $R(X) \in \mathbb{Q}[X]$. Find its splitting field $\mathbb{Q}_R = M$ and its Galois group G_M in S_3 .
- (c) Verify that $M \subset \mathbb{Q}$ and compute $\operatorname{Gal}(\mathbb{Q}_f/M) \subset G_f$.
- (d) Compute the discriminants of f(X) and R(X).

Exercise 4. Compute the Galois group of the following cubic polynomials in $\mathbb{Q}[X]$:

- (a) $f(X) = X^3 X 1$.
- (b) $g(X) = X^3 3X 1.$