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Module 3 — Problem Set 2 (MW) Solutions

1. Let t ∈ Z. Consider the polynomial f(X) = X4 − tX3 − 6X2 + tX + 1.

(a) Let α be a root of f in a splitting field over Q. Check that α−1
α+1 is also a root of f in the field E = Q(α).

(b) What is the order of the matrix 1√
2

(
1 −1
1 1

)
in the group GL2(Q) of regular 2 × 2 matrices with coefficients in

Q?

(c) Find the two other roots of f in E.

(d) Check that the polynomial f is reducible over Q if and only if t is either 0, or 3, or −3.
For each of the three values t = 0, t = 3 and t = −3, write the four roots of f . What is the group Aut(E/Q)?

What is the Galois group of f over Q as a subgroup of the symmetric group S4? Is-it transitive?

(e) Assume t 6∈ {0, 3,−3}. What is the group Aut(E/Q)? What is the Galois group of f over Q as a subgroup of the
symmetric group S4? Is-it transitive?
Which are the subfields of E? For each of them give the irreducible polynomial of an element γ such that this subfield
if Q(γ). Is Q(γ) a Galois extension of Q? If so, what is its Galois group?

Solution.

(a) Set α1 = α and α2 = α−1
α+1 . We have α = α2+1

−α2+1 . The equation

α4 − tα3 − 6α2 + tα+ 1 = 0

yields

(α2 + 1)4 − t(α2 + 1)3(−α2 + 1)− 6(α2 + 1)2(−α2 + 1)2 + t(α2 + 1)(−α2 + 1)3 + (−α2 + 1)4 = 0

from which we deduce
α4
2 − tα3

2 − 6α2
2 + tα2 + 1 = 0.

(b) Set M = 1√
2

(
−1 −1
1 1

)
, which is a matrix with determinant 1. We have M2 =

(
0 −1
1 0

)
, M3 = 1√

2

(
−1 1
1 −1

)
and M4 = I (the identity matrix). Hence M has order 4 in the group GL2(Q) of regular 2×2 matrices with coefficients
in Q.

(c) The two other roots of f are given by the fractional linear transformations associated with the matrices M2 and
M3, hence the other roots are α3 = −1

α and α4 = −α−1
α−1 ·

(d) Assume f is reducible. Since it has no rational root, it is a product of two quadratic forms. The constant terms
have product 1, hence they are equal (and either 1 or −1). Write

X4 − tX3 − 6X2 + tX + 1 = (X2 + aX + c)(X2 + bX + c)

with c = ±1. By identification we get

a+ b = −t, ab+ 2c = −6, c(a+ b) = t.

• In the case t = 0 we deduce b = −a, 2c− a2 = −6, hence c = −1, a = ±2, which yields

X4 − 6X2 + 1 = (X2 − 2X − 1)(X2 + 2X − 1).

The field E is Q(
√

2), a quadratic extension of Q with Galois group the cyclic group or order 2, the four roots are

α1 = 1 +
√

2, α2 = −1 +
√

2, α3 = −1−
√

2, α4 = 1−
√

2.

We have X2 − 2X − 1 = (X − α1)(X − α4) and X2 + 2X − 1 = (X − α2)(X − α3). Hence the Galois group of f over
Q is

Gf = {1, (1, 4), (2, 3), (1, 4)(2, 3)}.
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It is not transitive.
Assume t 6= 0. The equations a+ b = t and c(a+ b) = t yield c = −1. Now ab = −4 and a, b are the roots of the

polynomial X2 + tX − 4. Hence t2 + 16 is a square, which is true only for t2 = 9, t = ±3.
• For t = 3 we have

X4 − 3X3 − 6X2 + 3X + 1 = (X2 +X − 1)(X2 − 4X − 1),

the field E is Q(
√

5), a quadratic extension of Q with Galois group the cyclic group or order 2, the four roots are

α1 =
−1 +

√
5

2
, α2 = 2−

√
5, α3 =

−1−
√

5

2
, α4 = 2 +

√
5.

We have X2 +X − 1 = (X − α1)(X − α3) and X2 − 4X − 1 = (X − α2)(X − α4). Hence the Galois group of f over
Q is

Gf = {1, (1, 3), (2, 4), (1, 3)(2, 4)}.

It is not transitive.
• For t = −3 we have

X4 + 3X3 − 6X2 − 3X + 1 = (X2 −X − 1)(X2 + 4X − 1),

the field E is Q(
√

5), a quadratic extension of Q with Galois group the cyclic group or order 2, the four roots are

α1 =
1 +
√

5

2
, α2 = −2 +

√
5, α3 =

1−
√

5

2
, α4 = −2−

√
5.

We have X2 −X − 1 = (X − α1)(X − α3) and X2 + 4X − 1 = (X − α2)(X − α4). Hence the Galois group of f over
Q is

Gf = {1, (1, 3), (2, 4), (1, 3)(2, 4)}.

It is not transitive.

(e) Assume t 6∈ {0, 3,−3}, the polynomial f is irreducible, the field E is an extension of Q of degree 4, the Galois
group G = Gal(E/Q) is cyclic of order 4. Hence it has 3 subgroups, namely {1}, G, and a cyclic subgroup of order
2: this is the subgroup of G generated by σ2. An element of K which is fixed by σ2 is γ = α + 1

α , the irreducible
polynomial of which is

X2 − tX − 4.

(Write γ2 + aγ + c = 0, replace γ in terms of α and identify). The Galois group of f over Q is the cyclic subgroup

Gf = {1, σ, σ2, σ3}

of S4 with σ = (1, 2, 3, 4). It is transitive.
There are three subfields of E, namely Q, E and Q(γ), associated irreducible polynomials are X, f and X2−tX−4

respectively (these are not unique!).

2. Let m ∈ Z.
(a) Check that the polynomial X4 −m is reducible over Q if and only if either m is a square in Z or m = −4k4 with
k ∈ Z.

When the polynomial X4−m is reducible over Q, what is its splitting field over Q? What is its Galois group over
Q as a subgroup of the symmetric group S4? Is-it transitive?

(b) Assume m > 0 is not a square in Z. Let E be the splitting field over Q of X4 −m.
Check that E is also the splitting field over Q of X4 + 4m.
Hint: compute the irreducible polynomials of (1 + i) 4

√
m and (1− i) 4

√
m.

What are the Galois group over Q of the polynomials X4−m and X4 + 4m as subgroups of the symmetric group S4?
Are they transitive?
Give the list of subfields of E. For each of them, give an element γ such that this field is Q(γ). Give the Galois groups
of E over Q(γ), and also of Q(γ) over Q when this extension is Galois.

Solution.

Recall that an integer is a square in Z if and only if it is a square in Q.
(a) If m = k2, then

X4 −m = (X2 − k)(X2 + k)

is reducible over Q. If m = −4k4, then

X4 −m = (X2 + 2k2)2 − 4k2X2 = (X2 + 2kX + 2k2)(X2 − 2kX + 2k2)
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is reducible over Q.
Conversely, assume X4 −m is a product of two quadratic forms

X4 −m = (X2 + aX + b)(X2 + cX + d).

Then
a+ c = 0, ac+ b+ d = 0, ad+ bc = 0, bd = −m.

We consider two cases.
(1) Assume a = 0. Then c = 0, b+ d = 0, b2 = m. Hence m is a square.
(2) Assume a 6= 0. Then c = −a, d = b, a2 = 2b, hence a is even, a = 2k, and then b = 2k2, m = −b2 = −4k2.

When m is a fourth power in Q (or in Z, it is the same), m = k4, then X4 −m has two rational roots, α1 = k and
α2 = −k, and two complex roots α3 = ik and α4 = −ik. The splitting field is Q(i). The Galois group of X4 −m over
Q is the cyclic subgroup {1, (3, 4)} of S4 of order 2. It is not transitive.

When m is a square, m = k2, k > 0, but not a fourth power (k is not a square), then X4 −m splits over Q as
a product of two irreducible factors of degree 2, namely (X2 − k)(X2 + k), the splitting field is E = Q(

√
k, i), an

extension of Q of degree 4; write α1 =
√
k, α2 = −

√
k, α3 = i

√
k, α4 = −i

√
k. Then the Galois group Gf of f over Q

is the abelian non cyclic group of order 4

Gf = {1, (1, 2), (3, 4), (1, 2)(3, 4)}

which is not transitive.

(b) The situation is similar to exercise 3 of the problem set 1 which was dealing with the special case m = 2. The
splitting field of the polynomial X4 − 2 over Q is also the splitting field of the polynomial X4 + 2 over Q, namely
Q(i, 4

√
2). This field contains the primitive 8–th roots of unity, namely the roots (±1± i)

√
2 of X4 + 1 (the splitting

field of X4 +1 over Q is Q(i,
√

2)). However, when m 6= 2k4 and m 6= 8k4, the splitting field of the polynomial X4−m
over Q does not contain the primitive 8–th roots of unity.

Let α = 4
√
m. Since E is a quartic extension of Q(i), there is an element σ in the Galois group G of E over Q such

that σ(α) = iα and σ(i) = i. Let τ be the complex conjugation which maps α to α and i to −i. As elements of S4,
writing

α1 = α, α2 = iα, α3 = −α, α4 = −iα

for the four roots of X4 −m, we have σ = (1, 2, 3, 4) and τ = (2, 4). The Galois group of X4 −m over Q is

Gf = {1, σ, σ2, σ3, τ, τσ, τσ2, τσ3} ⊂ S4,

with σ4 = τ2 = 1 and στ = τσ−1. It is transitive (X4 −m is irreducible over Q).
Since m is not a square in Z, −4m is not of the form −4k4, hence X4 + 4m is irreducible (according to (a)). The

roots of X4 + 4m are β1 = (1 + i) 4
√
m, β2 = (1− i) 4

√
m, β3 = (−1 + i) 4

√
m and β4 = (−1− i) 4

√
m. Hence the splitting

field of X4+4m over Q is Q( 4
√
m, i), which is E. We have σ(β1) = β3, σ(β3) = β4, σ(β4) = β2, τ(β1) = β2, τ(β3) = β4,

hence the Galois group of X4 + 4m over Q is the subgroup of S4 of order 8 generated by σ and τ with

σ = (1, 3, 4, 2), τ = (1, 2)(3, 4).

It is transitive (X4 + 4m is irreducible over Q)..
The 10 subgroups of G are: {1},

H0 = {1, σ2}, H1 = {1, τ}, H2 = {1, τσ}, H3 = {1, τσ2}, H4 = {1, τσ3},

N0 = {1, σ, σ2, σ3}, N1 = {1, σ2, τ, τσ2} N2 = {1, σ2, τσ, τσ3}

and G. Their fixed fields are E{1} = E,

EH0 = Q(i,
√
m), EH1 = Q( 4

√
m), EH2 = Q((1− i) 4

√
m), EH3 = Q(i 4

√
m), EH4 = Q((1 + i) 4

√
m),

EN0 = Q(i), EN1 = Q(
√
m), EN2 = Q(i

√
m)

and EG = Q. The Galois groups over Q of these fields are Gal(E{1}/Q) = G,

Gal(EH0/Q) = G/H0

which is a non cyclic group of order 4

Gal(EN0/Q) = G/N0, Gal(EN1/Q) = G/N1, Gal(EN2/Q) = G/N2
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which are cyclic groups of order 2, and Gal(EG/Q) = {1}. The extensions EH1 , EH2 , EH3 and EH4 of Q are not
Galois.

The Galois groups of E over these fields are : Gal(E/E{1}) = {1},

Gal(E/EH0) = H0, Gal(E/EH1) = H1, Gal(E/EH2) = H2, Gal(E/EH3) = H3, Gal(E/EH4) = H4,

which are cyclic groups or order 2,
Gal(E/EN0) = N0,

which a cyclic group of order 4,
Gal(E/EN1) = N1, Gal(E/EN2) = N2

which are abelian non cyclic groups of order 4, and Gal(E/EG) = G.

Remark. One checks on these examples that the Galois group over F of a polynomial f ∈ F [X] is transitive if and
only f is irreducible.

3. Let F be a field and f an irreducible separable monic polynomial of degree 3 with coefficients in F . Let E be a
splitting field of f over F , let α1, α2, α3 be the roots of f in E and let Gf be the Galois group of f over F . Set

δ = (α2 − α1)(α3 − α1)(α3 − α2).

(a) For a permutation σ ∈ S3, set

δσ = (ασ(2) − ασ(1))(ασ(3) − ασ(1))(ασ(3) − ασ(2)).

Check

δσ =

{
−δ if σ is a transposition (1, 2), (1, 3), (2, 3),

δ if σ belongs to the cyclic subgroup C3 = {1, (1, 2, 3), (1, 3, 2)} of S3.

(b) Deduce that ∆ = δ2 belongs to F .
(c) Check that Gf contains a transposition if and only if ∆ is not a square in F .
(d) Deduce that Gf is
• the cyclic group C3 of order 3 if ∆ is a square in F ,
• the symmetric group S3 of order 6 if ∆ is not a square in F .

Solution.
(a) is trivial.
(b) From σ(∆) = σ(δ)2 = δ2 = ∆ for all σ ∈ Gf it follows that ∆ belongs to the fixed field of Gal(E/F ) which is F .
(c) If δ ∈ F , then by Galois Theory σ(δ) = δ for all σ ∈ Gf hence Gf contains no transposition.
If δ 6∈ F , then by Galois Theory there exists σ ∈ Gf such that σ(δ) 6= δ hence Gf contains a transposition.
(d) The order of the group Gf is a multiple of 3 since E contains F (α1) which has degree 3 over F . Hence Gf contains
the subgroup C3 which is the only subgroup of S3 of order 3.

The only subgroup of S3 which contains no transposition and is 6= (1) is the cyclic group C3 = {1, (1, 2, 3), (1, 3, 2)}
of order 3. Hence if Gf contains no transposition then Gf = C3.

If Gf contains a transposition, then since Gf also contains C3 we have Gf = S3.

Remark. Write f(X) = X3 + aX2 + bX + c. The relation

X3 + aX2 + bX + c = (X − α1)(X − α2)(X − α3)

is equivalent to
α1 + α2 + α3 = −a, α1α2 + α3α1 + α3α2 = b, α1α2α3 = −c.

By expanding the formula
∆ = (α2 − α1)2(α3 − α1)2(α3 − α2)2

one can deduce that the discriminant is

∆ = a2b2 + 18abc− 4b3 − 4ac3 − 27c2.

4.
(a) For each of the prime numbers p = 3, 5, 7, 11, 13, 17, is the regular polygon with p sides constructible or not?
(b) Using

641 = 54 + 24 = 5 · 27 + 1,
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check that the Fermat number F5 = 22
5

+ 1 is divisible by 641.
Hint. What is the inverse of 54 in the field F641?

Solution. (a) The answer is yes for p = 3, 5 and 17 which are Fermat primes of the form Fn = 22
n

+ 1:

3 = F0, 5 = F1, 17 = F2,

but not for 7, 11, 13, since for these primes p the number p− 1 is not a power of 2.
(b) We have 5 · 27 ≡ −1 mod 641, hence 54 · 228 ≡ 1 mod 641. Therefore the inverse of 54 in the field F641 is 228.
Since 54 ≡ −24 mod 641, we deduce

232 ≡ −1 mod 641.
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