Nepal Algebra Project 2018

Tribhuvan University

Module 3 — Problem Set 2 (MW) Solutions

1. Let $t \in \mathbb{Z}$. Consider the polynomial $f(X) = X^4 - tX^3 - 6X^2 + tX + 1$.

(a) Let α be a root of f in a splitting field over \mathbb{Q} . Check that $\frac{\alpha-1}{\alpha+1}$ is also a root of f in the field $E = \mathbb{Q}(\alpha)$.

(b) What is the order of the matrix $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ in the group $\operatorname{GL}_2(\mathbb{Q})$ of regular 2 × 2 matrices with coefficients in $\mathbb{Q}?$

(c) Find the two other roots of f in E.

(d) Check that the polynomial f is reducible over \mathbb{Q} if and only if t is either 0, or 3, or -3.

For each of the three values t = 0, t = 3 and t = -3, write the four roots of f. What is the group Aut (E/\mathbb{Q}) ? What is the Galois group of f over \mathbb{Q} as a subgroup of the symmetric group \mathfrak{S}_4 ? Is-it transitive?

(e) Assume $t \notin \{0, 3, -3\}$. What is the group Aut (E/\mathbb{Q}) ? What is the Galois group of f over \mathbb{Q} as a subgroup of the symmetric group \mathfrak{S}_4 ? Is-it transitive?

Which are the subfields of E? For each of them give the irreducible polynomial of an element γ such that this subfield if $\mathbb{Q}(\gamma)$. Is $\mathbb{Q}(\gamma)$ a Galois extension of \mathbb{Q} ? If so, what is its Galois group?

Solution.

(a) Set $\alpha_1 = \alpha$ and $\alpha_2 = \frac{\alpha - 1}{\alpha + 1}$. We have $\alpha = \frac{\alpha_2 + 1}{-\alpha_2 + 1}$. The equation

$$\alpha^4 - t\alpha^3 - 6\alpha^2 + t\alpha + 1 = 0$$

yields

$$(\alpha_2 + 1)^4 - t(\alpha_2 + 1)^3(-\alpha_2 + 1) - 6(\alpha_2 + 1)^2(-\alpha_2 + 1)^2 + t(\alpha_2 + 1)(-\alpha_2 + 1)^3 + (-\alpha_2 + 1)^4 = 0$$

from which we deduce

$$\alpha_2^4 - t\alpha_2^3 - 6\alpha_2^2 + t\alpha_2 + 1 = 0.$$

(b) Set $M = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$, which is a matrix with determinant 1. We have $M^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $M^3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ and $M^4 = I$ (the identity matrix). Hence M has order 4 in the group $\operatorname{GL}_2(\mathbb{Q})$ of regular 2×2 matrices with coefficients in \mathbb{Q} .

(c) The two other roots of f are given by the fractional linear transformations associated with the matrices M^2 and M^3 , hence the other roots are $\alpha_3 = \frac{-1}{\alpha}$ and $\alpha_4 = \frac{-\alpha-1}{\alpha-1}$.

(d) Assume f is reducible. Since it has no rational root, it is a product of two quadratic forms. The constant terms have product 1, hence they are equal (and either 1 or -1). Write

$$X^{4} - tX^{3} - 6X^{2} + tX + 1 = (X^{2} + aX + c)(X^{2} + bX + c)$$

with $c = \pm 1$. By identification we get

$$a + b = -t$$
, $ab + 2c = -6$, $c(a + b) = t$.

• In the case t = 0 we deduce b = -a, $2c - a^2 = -6$, hence c = -1, $a = \pm 2$, which yields

$$X^{4} - 6X^{2} + 1 = (X^{2} - 2X - 1)(X^{2} + 2X - 1).$$

The field E is $\mathbb{Q}(\sqrt{2})$, a quadratic extension of \mathbb{Q} with Galois group the cyclic group or order 2, the four roots are

$$\alpha_1 = 1 + \sqrt{2}, \quad \alpha_2 = -1 + \sqrt{2}, \quad \alpha_3 = -1 - \sqrt{2}, \quad \alpha_4 = 1 - \sqrt{2}$$

We have $X^2 - 2X - 1 = (X - \alpha_1)(X - \alpha_4)$ and $X^2 + 2X - 1 = (X - \alpha_2)(X - \alpha_3)$. Hence the Galois group of f over \mathbb{Q} is

$$G_f = \{1, (1, 4), (2, 3), (1, 4)(2, 3)\}.$$

It is not transitive.

Assume $t \neq 0$. The equations a + b = t and c(a + b) = t yield c = -1. Now ab = -4 and a, b are the roots of the polynomial $X^2 + tX - 4$. Hence $t^2 + 16$ is a square, which is true only for $t^2 = 9$, $t = \pm 3$.

 \bullet For t=3 we have

$$X^{4} - 3X^{3} - 6X^{2} + 3X + 1 = (X^{2} + X - 1)(X^{2} - 4X - 1)$$

the field E is $\mathbb{Q}(\sqrt{5})$, a quadratic extension of \mathbb{Q} with Galois group the cyclic group or order 2, the four roots are

$$\alpha_1 = \frac{-1 + \sqrt{5}}{2}, \quad \alpha_2 = 2 - \sqrt{5}, \quad \alpha_3 = \frac{-1 - \sqrt{5}}{2}, \quad \alpha_4 = 2 + \sqrt{5}.$$

We have $X^2 + X - 1 = (X - \alpha_1)(X - \alpha_3)$ and $X^2 - 4X - 1 = (X - \alpha_2)(X - \alpha_4)$. Hence the Galois group of f over \mathbb{Q} is

$$G_f = \{1, (1,3), (2,4), (1,3)(2,4)\}.$$

It is not transitive.

• For t = -3 we have

$$X^{4} + 3X^{3} - 6X^{2} - 3X + 1 = (X^{2} - X - 1)(X^{2} + 4X - 1)$$

the field E is $\mathbb{Q}(\sqrt{5})$, a quadratic extension of \mathbb{Q} with Galois group the cyclic group or order 2, the four roots are

$$\alpha_1 = \frac{1+\sqrt{5}}{2}, \quad \alpha_2 = -2+\sqrt{5}, \quad \alpha_3 = \frac{1-\sqrt{5}}{2}, \quad \alpha_4 = -2-\sqrt{5}.$$

We have $X^2 - X - 1 = (X - \alpha_1)(X - \alpha_3)$ and $X^2 + 4X - 1 = (X - \alpha_2)(X - \alpha_4)$. Hence the Galois group of f over \mathbb{Q} is

$$G_f = \{1, (1,3), (2,4), (1,3)(2,4)\}.$$

It is not transitive.

(e) Assume $t \notin \{0, 3, -3\}$, the polynomial f is irreducible, the field E is an extension of \mathbb{Q} of degree 4, the Galois group $G = \text{Gal}(E/\mathbb{Q})$ is cyclic of order 4. Hence it has 3 subgroups, namely $\{1\}$, G, and a cyclic subgroup of order 2: this is the subgroup of G generated by σ^2 . An element of K which is fixed by σ^2 is $\gamma = \alpha + \frac{1}{\alpha}$, the irreducible polynomial of which is

$$X^2 - tX - 4$$

(Write $\gamma^2 + a\gamma + c = 0$, replace γ in terms of α and identify). The Galois group of f over \mathbb{Q} is the cyclic subgroup

$$G_f = \{1, \sigma, \sigma^2, \sigma^3\}$$

of \mathfrak{S}_4 with $\sigma = (1, 2, 3, 4)$. It is transitive.

There are three subfields of E, namely \mathbb{Q} , E and $\mathbb{Q}(\gamma)$, associated irreducible polynomials are X, f and $X^2 - tX - 4$ respectively (these are not unique!).

2. Let $m \in \mathbb{Z}$.

(a) Check that the polynomial $X^4 - m$ is reducible over \mathbb{Q} if and only if either m is a square in \mathbb{Z} or $m = -4k^4$ with $k \in \mathbb{Z}$.

When the polynomial $X^4 - m$ is reducible over \mathbb{Q} , what is its splitting field over \mathbb{Q} ? What is its Galois group over \mathbb{Q} as a subgroup of the symmetric group \mathfrak{S}_4 ? Is-it transitive?

(b) Assume m > 0 is not a square in \mathbb{Z} . Let E be the splitting field over \mathbb{Q} of $X^4 - m$.

Check that E is also the splitting field over \mathbb{Q} of $X^4 + 4m$.

Hint: compute the irreducible polynomials of $(1+i)\sqrt[4]{m}$ and $(1-i)\sqrt[4]{m}$.

What are the Galois group over \mathbb{Q} of the polynomials $X^4 - m$ and $X^4 + 4m$ as subgroups of the symmetric group \mathfrak{S}_4 ? Are they transitive?

Give the list of subfields of E. For each of them, give an element γ such that this field is $\mathbb{Q}(\gamma)$. Give the Galois groups of E over $\mathbb{Q}(\gamma)$, and also of $\mathbb{Q}(\gamma)$ over \mathbb{Q} when this extension is Galois.

Solution.

Recall that an integer is a square in \mathbb{Z} if and only if it is a square in \mathbb{Q} . (a) If $m = k^2$, then

$$X^4 - m = (X^2 - k)(X^2 + k)$$

is reducible over \mathbb{Q} . If $m = -4k^4$, then

$$X^{4} - m = (X^{2} + 2k^{2})^{2} - 4k^{2}X^{2} = (X^{2} + 2kX + 2k^{2})(X^{2} - 2kX + 2k^{2})$$

is reducible over $\mathbb Q.$

Conversely, assume $X^4 - m$ is a product of two quadratic forms

$$X^{4} - m = (X^{2} + aX + b)(X^{2} + cX + d).$$

Then

$$a + c = 0$$
, $ac + b + d = 0$, $ad + bc = 0$, $bd = -m$.

We consider two cases.

(1) Assume a = 0. Then c = 0, b + d = 0, $b^2 = m$. Hence m is a square.

(2) Assume $a \neq 0$. Then c = -a, d = b, $a^2 = 2b$, hence a is even, a = 2k, and then $b = 2k^2$, $m = -b^2 = -4k^2$.

When m is a fourth power in \mathbb{Q} (or in \mathbb{Z} , it is the same), $m = k^4$, then $X^4 - m$ has two rational roots, $\alpha_1 = k$ and $\alpha_2 = -k$, and two complex roots $\alpha_3 = ik$ and $\alpha_4 = -ik$. The splitting field is $\mathbb{Q}(i)$. The Galois group of $X^4 - m$ over \mathbb{Q} is the cyclic subgroup $\{1, (3, 4)\}$ of \mathfrak{S}_4 of order 2. It is not transitive.

When *m* is a square, $m = k^2$, k > 0, but not a fourth power (*k* is not a square), then $X^4 - m$ splits over \mathbb{Q} as a product of two irreducible factors of degree 2, namely $(X^2 - k)(X^2 + k)$, the splitting field is $E = \mathbb{Q}(\sqrt{k}, i)$, an extension of \mathbb{Q} of degree 4; write $\alpha_1 = \sqrt{k}$, $\alpha_2 = -\sqrt{k}$, $\alpha_3 = i\sqrt{k}$, $\alpha_4 = -i\sqrt{k}$. Then the Galois group G_f of f over \mathbb{Q} is the abelian non cyclic group of order 4

$$G_f = \{1, (1, 2), (3, 4), (1, 2)(3, 4)\}$$

which is not transitive.

(b) The situation is similar to exercise 3 of the problem set 1 which was dealing with the special case m = 2. The splitting field of the polynomial $X^4 - 2$ over \mathbb{Q} is also the splitting field of the polynomial $X^4 + 2$ over \mathbb{Q} , namely $\mathbb{Q}(i, \sqrt[4]{2})$. This field contains the primitive 8-th roots of unity, namely the roots $(\pm 1 \pm i)\sqrt{2}$ of $X^4 + 1$ (the splitting field of $X^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(i, \sqrt{2})$). However, when $m \neq 2k^4$ and $m \neq 8k^4$, the splitting field of the polynomial $X^4 - m$ over \mathbb{Q} does not contain the primitive 8-th roots of unity.

Let $\alpha = \sqrt[4]{m}$. Since *E* is a quartic extension of $\mathbb{Q}(i)$, there is an element σ in the Galois group *G* of *E* over \mathbb{Q} such that $\sigma(\alpha) = i\alpha$ and $\sigma(i) = i$. Let τ be the complex conjugation which maps α to α and *i* to -i. As elements of \mathfrak{S}_4 , writing

$$\alpha_1 = \alpha, \quad \alpha_2 = i\alpha, \quad \alpha_3 = -\alpha, \quad \alpha_4 = -i\alpha$$

for the four roots of $X^4 - m$, we have $\sigma = (1, 2, 3, 4)$ and $\tau = (2, 4)$. The Galois group of $X^4 - m$ over \mathbb{Q} is

$$G_f = \{1, \sigma, \sigma^2, \sigma^3, \tau, \tau\sigma, \tau\sigma^2, \tau\sigma^3\} \subset \mathfrak{S}_4,$$

with $\sigma^4 = \tau^2 = 1$ and $\sigma \tau = \tau \sigma^{-1}$. It is transitive $(X^4 - m \text{ is irreducible over } \mathbb{Q})$.

Since *m* is not a square in \mathbb{Z} , -4m is not of the form $-4k^4$, hence $X^4 + 4m$ is irreducible (according to (a)). The roots of $X^4 + 4m$ are $\beta_1 = (1+i)\sqrt[4]{m}$, $\beta_2 = (1-i)\sqrt[4]{m}$, $\beta_3 = (-1+i)\sqrt[4]{m}$ and $\beta_4 = (-1-i)\sqrt[4]{m}$. Hence the splitting field of $X^4 + 4m$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[4]{m}, i)$, which is *E*. We have $\sigma(\beta_1) = \beta_3$, $\sigma(\beta_3) = \beta_4$, $\sigma(\beta_4) = \beta_2$, $\tau(\beta_1) = \beta_2$, $\tau(\beta_3) = \beta_4$, hence the Galois group of $X^4 + 4m$ over \mathbb{Q} is the subgroup of \mathfrak{S}_4 of order 8 generated by σ and τ with

$$\sigma = (1, 3, 4, 2), \quad \tau = (1, 2)(3, 4),$$

It is transitive $(X^4 + 4m$ is irreducible over $\mathbb{Q})$..

The 10 subgroups of G are: $\{1\}$,

$$H_0 = \{1, \sigma^2\}, \quad H_1 = \{1, \tau\}, \quad H_2 = \{1, \tau\sigma\}, \quad H_3 = \{1, \tau\sigma^2\}, \quad H_4 = \{1, \tau\sigma^3\},$$
$$N_0 = \{1, \sigma, \sigma^2, \sigma^3\}, \quad N_1 = \{1, \sigma^2, \tau, \tau\sigma^2\} \quad N_2 = \{1, \sigma^2, \tau\sigma, \tau\sigma^3\}$$

and G. Their fixed fields are $E^{\{1\}} = E$,

$$E^{H_0} = \mathbb{Q}(i,\sqrt{m}), \qquad E^{H_1} = \mathbb{Q}(\sqrt[4]{m}), \qquad E^{H_2} = \mathbb{Q}((1-i)\sqrt[4]{m}), \qquad E^{H_3} = \mathbb{Q}(i\sqrt[4]{m}), \qquad E^{H_4} = \mathbb{Q}((1+i)\sqrt[4]{m}), \\ E^{N_0} = \mathbb{Q}(i), \qquad E^{N_1} = \mathbb{Q}(\sqrt{m}), \qquad E^{N_2} = \mathbb{Q}(i\sqrt{m})$$

and $E^G = \mathbb{Q}$. The Galois groups over \mathbb{Q} of these fields are $\operatorname{Gal}(E^{\{1\}}/\mathbb{Q}) = G$,

$$\operatorname{Gal}(E^{H_0}/\mathbb{Q}) = G/H_0$$

which is a non cyclic group of order 4

$$\operatorname{Gal}(E^{N_0}/\mathbb{Q}) = G/N_0, \quad \operatorname{Gal}(E^{N_1}/\mathbb{Q}) = G/N_1, \quad \operatorname{Gal}(E^{N_2}/\mathbb{Q}) = G/N_2$$

which are cyclic groups of order 2, and $\operatorname{Gal}(E^G/\mathbb{Q}) = \{1\}$. The extensions E^{H_1} , E^{H_2} , E^{H_3} and E^{H_4} of \mathbb{Q} are not Galois.

The Galois groups of E over these fields are : $\operatorname{Gal}(E/E^{\{1\}}) = \{1\},\$

 $\operatorname{Gal}(E/E^{H_0}) = H_0, \qquad \operatorname{Gal}(E/E^{H_1}) = H_1, \qquad \operatorname{Gal}(E/E^{H_2}) = H_2, \qquad \operatorname{Gal}(E/E^{H_3}) = H_3, \qquad \operatorname{Gal}(E/E^{H_4}) = H_4,$

which are cyclic groups or order 2,

$$\operatorname{Gal}(E/E^{N_0}) = N_0,$$

which a cyclic group of order 4,

 $Gal(E/E^{N_1}) = N_1, \quad Gal(E/E^{N_2}) = N_2$

which are abelian non cyclic groups of order 4, and $\operatorname{Gal}(E/E^G) = G$.

Remark. One checks on these examples that the Galois group over F of a polynomial $f \in F[X]$ is transitive if and only f is irreducible.

3. Let F be a field and f an irreducible separable monic polynomial of degree 3 with coefficients in F. Let E be a splitting field of f over F, let $\alpha_1, \alpha_2, \alpha_3$ be the roots of f in E and let G_f be the Galois group of f over F. Set

$$\delta = (\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2).$$

(a) For a permutation $\sigma \in \mathfrak{S}_3$, set

$$\delta_{\sigma} = (\alpha_{\sigma(2)} - \alpha_{\sigma(1)})(\alpha_{\sigma(3)} - \alpha_{\sigma(1)})(\alpha_{\sigma(3)} - \alpha_{\sigma(2)}).$$

Check

$$\delta_{\sigma} = \begin{cases} -\delta & \text{if } \sigma \text{ is a transposition } (1,2), (1,3), (2,3), \\ \delta & \text{if } \sigma \text{ belongs to the cyclic subgroup } C_3 = \{1, (1,2,3), (1,3,2)\} \text{ of } \mathfrak{S}_3 \end{cases}$$

- (b) Deduce that $\Delta = \delta^2$ belongs to F.
- (c) Check that G_f contains a transposition if and only if Δ is not a square in F.
- (d) Deduce that G_f is
- the cyclic group C_3 of order 3 if Δ is a square in F,
- the symmetric group \mathfrak{S}_3 of order 6 if Δ is not a square in F.

Solution.

(a) is trivial.

(b) From $\sigma(\Delta) = \sigma(\delta)^2 = \delta^2 = \Delta$ for all $\sigma \in G_f$ it follows that Δ belongs to the fixed field of $\operatorname{Gal}(E/F)$ which is F. (c) If $\delta \in F$, then by Galois Theory $\sigma(\delta) = \delta$ for all $\sigma \in G_f$ hence G_f contains no transposition.

If $\delta \notin F$, then by Galois Theory there exists $\sigma \in G_f$ such that $\sigma(\delta) \neq \delta$ hence G_f contains a transposition.

(d) The order of the group G_f is a multiple of 3 since E contains $F(\alpha_1)$ which has degree 3 over F. Hence G_f contains the subgroup C_3 which is the only subgroup of \mathfrak{S}_3 of order 3.

The only subgroup of \mathfrak{S}_3 which contains no transposition and is $\neq (1)$ is the cyclic group $C_3 = \{1, (1, 2, 3), (1, 3, 2)\}$ of order 3. Hence if G_f contains no transposition then $G_f = C_3$.

If G_f contains a transposition, then since G_f also contains C_3 we have $G_f = \mathfrak{S}_3$.

Remark. Write $f(X) = X^3 + aX^2 + bX + c$. The relation

$$X^{3} + aX^{2} + bX + c = (X - \alpha_{1})(X - \alpha_{2})(X - \alpha_{3})$$

is equivalent to

$$\alpha_1 + \alpha_2 + \alpha_3 = -a, \quad \alpha_1 \alpha_2 + \alpha_3 \alpha_1 + \alpha_3 \alpha_2 = b, \quad \alpha_1 \alpha_2 \alpha_3 = -c.$$

By expanding the formula

$$\Delta = (\alpha_2 - \alpha_1)^2 (\alpha_3 - \alpha_1)^2 (\alpha_3 - \alpha_2)^2$$

one can deduce that the discriminant is

$$\Delta = a^2b^2 + 18abc - 4b^3 - 4ac^3 - 27c^2.$$

4.

(a) For each of the prime numbers p = 3, 5, 7, 11, 13, 17, is the regular polygon with p sides constructible or not? (b) Using

$$641 = 5^4 + 2^4 = 5 \cdot 2^7 + 1,$$

check that the Fermat number $F_5 = 2^{2^5} + 1$ is divisible by 641. Hint. What is the inverse of 5^4 in the field \mathbb{F}_{641} ?

Solution. (a) The answer is yes for p = 3, 5 and 17 which are Fermat primes of the form $F_n = 2^{2^n} + 1$:

$$3 = F_0, \quad 5 = F_1, \quad 17 = F_2,$$

but not for 7, 11, 13, since for these primes p the number p-1 is not a power of 2. (b) We have $5 \cdot 2^7 \equiv -1 \mod 641$, hence $5^4 \cdot 2^{28} \equiv 1 \mod 641$. Therefore the inverse of 5^4 in the field \mathbb{F}_{641} is 2^{28} . Since $5^4 \equiv -2^4 \mod 641$, we deduce 20

$$2^{32} \equiv -1 \mod 641.$$

http://www.rnta.eu/nap/nap-2018/