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Module 3 — Problem Set 2 (MW) Solutions

1. Let t € Z. Consider the polynomial f(X) = X4 — X3 —6X%2 +tX + 1.

a) Let o be a root of J In a splitting field over Q. eck that =— 1s also a root of f in the fie = Qo).
L b ffi litting field Q. Check th gﬁ 1 f f in the field F =Q

. . 1
(b) What is the order of the matrix 7

b <i _11> in the group GL2(Q) of regular 2 x 2 matrices with coefficients in
Q7
(¢) Find the two other roots of f in F.
(d) Check that the polynomial f is reducible over Q if and only if ¢ is either 0, or 3, or —3.

For each of the three values t = 0, t = 3 and ¢ = —3, write the four roots of f. What is the group Aut(E/Q)?
What is the Galois group of f over Q as a subgroup of the symmetric group &47 Is-it transitive?
(e) Assume ¢ ¢ {0,3,—3}. What is the group Aut(E/Q)? What is the Galois group of f over Q as a subgroup of the
symmetric group &47 Is-it transitive?
Which are the subfields of E? For each of them give the irreducible polynomial of an element « such that this subfield
if Q(v). Is Q(v) a Galois extension of Q? If so, what is its Galois group?

Solution.
(a) Set a1 = a and ay = ;‘—j& We have o = % The equation
at —ta® -6’ +ta+1=0
yields

(g + 1) —t(ag + 1)3(—ag + 1) — 6(ag + 1)*(—ag + 1)? + t(ag + 1)(—az + 1)* + (—az + 1)* =0

from which we deduce
oy —tas —6a3 +taz +1=0.

V2 1 1 0 -1
and M* = I (the identity matrix). Hence M has order 4 in the group GL2(Q) of regular 2 x 2 matrices with coefficients
in Q.

(c) The two other roots of f are given by the fractional linear transformations associated with the matrices M? and

M3, hence the other roots are az = %1 and oy = ;a:ll-

(b) Set M = % (11 1), which is a matrix with determinant 1. We have M?2 = (0 1), M3 = % (11 ! )

(d) Assume f is reducible. Since it has no rational root, it is a product of two quadratic forms. The constant terms
have product 1, hence they are equal (and either 1 or —1). Write

X' —tX3 - 6X?+1X +1=(X?+aX +¢)(X?>+bX +¢)

with ¢ = +1. By identification we get
a+b=—t, ab+2c=-6, cla+b)=t.
o In the case t = 0 we deduce b = —a, 2¢ — a? = —6, hence ¢ = —1, a = +2, which yields
X —6X2+1=(X?-2X - 1)(X*+2X —1).
The field E is Q(v/2), a quadratic extension of Q with Galois group the cyclic group or order 2, the four roots are
a1 =14V2, ax=—-1+v2 az=-1-V2, ay=1-2.

We have X? —2X — 1= (X —a1)(X —a4) and X? +2X — 1 = (X — a2)(X — a3). Hence the Galois group of f over

Qis
Gr = {1,(1,4),(2.3), (1,4)(2,3)}.



It is not transitive.
Assume ¢ # 0. The equations a + b =t and c(a + b) =t yield ¢ = —1. Now ab = —4 and a, b are the roots of the
polynomial X2 +tX — 4. Hence t2 + 16 is a square, which is true only for ¢2 =9, t = +3.
e For ¢t = 3 we have
X*—3X% —6X24+3X +1=(X2+X - 1)(X?—4X —1),

the field E is Q(v/5), a quadratic extension of Q with Galois group the cyclic group or order 2, the four roots are
-1 5 -1—-+5
o1 = ;f’» ay=2-v5, az= 2\[', ag =2+ 5.

We have X2+ X — 1= (X —a1)(X —a3) and X? —4X — 1 = (X — a2)(X — a4). Hence the Galois group of f over
Qis
Gr={1,(1,3),(2,4),(1,3)(2,4)}.

It is not transitive.
e For t = —3 we have

X' 43X3 —6X%2 -3X +1=(X2-X —1)(X?+4X — 1),
the field F is Q(v/5), a quadratic extension of Q with Galois group the cyclic group or order 2, the four roots are

1+45
2 b

1—-+/5
0[2:—2—}—\/57 g = 2f, 014:—2—\/5.

a1 =

We have X2 — X —1= (X —a1)(X —a3) and X2 +4X —1 = (X — ag)(X — ay). Hence the Galois group of f over
Qis

Gy ={1,(1,3),(2,4),(1,3)(2,4)}.
It is not transitive.

(e) Assume t ¢ {0,3,—3}, the polynomial f is irreducible, the field F is an extension of Q of degree 4, the Galois
group G = Gal(F/Q) is cyclic of order 4. Hence it has 3 subgroups, namely {1}, G, and a cyclic subgroup of order
2: this is the subgroup of G' generated by 2. An element of K which is fixed by o2 is v = a + é, the irreducible
polynomial of which is

X% —tX — 4.

(Write 42 + a7y + ¢ = 0, replace 7 in terms of o and identify). The Galois group of f over Q is the cyclic subgroup
Gy ={1,0, 02,03}

of &4 with o = (1,2,3,4). It is transitive.
There are three subfields of E, namely Q, E and Q(), associated irreducible polynomials are X, f and X? —tX —4
respectively (these are not unique!).

2. Let m € Z.
(a) Check that the polynomial X% — m is reducible over Q if and only if either m is a square in Z or m = —4k* with
k€ Z.
When the polynomial X4 — m is reducible over Q, what is its splitting field over Q? What is its Galois group over
Q as a subgroup of the symmetric group 647 Is-it transitive?
(b) Assume m > 0 is not a square in Z. Let E be the splitting field over Q of X* — m.
Check that E is also the splitting field over Q of X* + 4m.
Hint: compute the irreducible polynomials of (1 +4)/m and (1 — ¢)¥/m.
What are the Galois group over Q of the polynomials X* —m and X* 4 4m as subgroups of the symmetric group &,?
Are they transitive?
Give the list of subfields of E. For each of them, give an element ~ such that this field is Q(v). Give the Galois groups
of E over Q(v), and also of Q(y) over Q when this extension is Galois.
Solution.

Recall that an integer is a square in Z if and only if it is a square in Q.
(a) If m = k2, then
Xt —m=(X?-k)(X%2+k)

is reducible over Q. If m = —4k*, then

Xt —m = (X2 +2k%)? —4k*X? = (X2 + 2kX +2k%)(X? — 2k X + 2k?)



is reducible over Q.
Conversely, assume X% — m is a product of two quadratic forms

Xt —m = (X?+aX +b)(X?+cX +d).

Then
a+c=0, ac+b+d=0, ad+bc=0, bd=—m.

We consider two cases.
(1) Assume a = 0. Then ¢ =0, b+ d = 0, b> = m. Hence m is a square.
(2) Assume a # 0. Then ¢ = —a, d = b, a? = 2b, hence a is even, a = 2k, and then b = 2k% m = —b*> = —4k>.

When m is a fourth power in Q (or in Z, it is the same), m = k*, then X* —m has two rational roots, a; = k and
as = —k, and two complex roots a3 = ik and ay = —ik. The splitting field is Q(7). The Galois group of X* —m over
Q is the cyclic subgroup {1, (3,4)} of &4 of order 2. It is not transitive.

When m is a square, m = k?, k > 0, but not a fourth power (k is not a square), then X* — m splits over Q as
a product of two irreducible factors of degree 2, namely (X2 — k)(X? + k), the splitting field is E = Q(vk, i), an
extension of Q of degree 4; write oy = Vk, oo = —Vk, a3 = ivk, ag = —iv/k. Then the Galois group Gy of f over Q
is the abelian non cyclic group of order 4

Gr={1,(1,2),(3,4),(1,2)(3,4)}

which is not transitive.

(b) The situation is similar to exercise 3 of the problem set 1 which was dealing with the special case m = 2. The
splitting field of the polynomial X% — 2 over Q is also the splitting field of the polynomial X* + 2 over Q, namely
Q(i, v/2). This field contains the primitive 8-th roots of unity, namely the roots (&1 +)v/2 of X* + 1 (the splitting
field of X441 over Q is Q(i,v/2)). However, when m # 2k* and m # 8k*, the splitting field of the polynomial X* —m
over Q does not contain the primitive 8-th roots of unity.

Let o = /m. Since E is a quartic extension of Q(), there is an element o in the Galois group G of E over Q such
that o(a) = i and o(i) = i. Let 7 be the complex conjugation which maps « to « and i to —i. As elements of Gy,
writing

ap =, Qy=1ta, Qz3=-—Q, Q4 =—Ix

for the four roots of X* —m, we have o = (1,2,3,4) and 7 = (2,4). The Galois group of X* —m over Q is
Gy =1{1,0, o, 0% 1,70,70% T0%} C By,

with 0 =72 = 1 and o7 = 7o~ 1. It is transitive (X* — m is irreducible over Q).

Since m is not a square in Z, —4m is not of the form —4k*, hence X* + 4m is irreducible (according to (a)). The
roots of X* +4m are 81 = (1 +1i)¥/m, B = (1 —i)/m, B3 = (=1 +14)¥/m and B4 = (—1 — i) /m. Hence the splitting
field of X4—|—4m over @ is Q(%, i), which is E. We have 0'(,81) = 63, 0'(63) = ﬂ4, 0'(,84) = 62, T(,B1) = 62, T(,Bg,) = 64,
hence the Galois group of X* 4 4m over Q is the subgroup of &, of order 8 generated by o and 7 with

o=1(1,3,4,2), 7=(1,2)(3,4).

It is transitive (X* + 4m is irreducible over Q)..
The 10 subgroups of G are: {1},

Hy = {1,02}, Hy={1,7}, Hy={l,70}, Hs= {1,7’02}, Hy= {1,7’03}7

No ={1,0,0% 0%}, Ny =1{1,0%7,70°} No={l1,0%10,10%}

and G. Their fixed fields are E{} = B,
B =Q(i,vm), BT =Q(m), E"=Q((l-i)vm), ET=Q(iVm),  E"=Q((l+i)Vm),

ENe =Q(i), EM =Q(vVm), E“*=Q(ivm)
and E¢ = Q. The Galois groups over Q of these fields are Gal(E{"} /Q) = G,

Gal(E™°/Q) = G/H,
which is a non cyclic group of order 4

Gal(EM /Q) = G/Ny, Gal(EM/Q)=G/N;, Gal(EN2/Q) = G/N,



which are cyclic groups of order 2, and Gal(E“/Q) = {1}. The extensions Ef1 EH2 EH: and EH+ of Q are not
Galois.
The Galois groups of E over these fields are : Gal(E/E{'}) = {1},

Gal(E/Ef°) = H,, Gal(E/Ef) = Hy, Gal(E/E™2) = H,, Gal(E/Ef*) = Hj, Gal(E/EH) = Hy,

which are cyclic groups or order 2,
Gal(E/EN°) = Ny,

which a cyclic group of order 4,
Gal(E/EN) = Ny, Gal(E/EN?) = N,

which are abelian non cyclic groups of order 4, and Gal(E/E%) = G.

Remark. One checks on these examples that the Galois group over F of a polynomial f € F[X] is transitive if and
only f is irreducible.

3. Let F be a field and f an irreducible separable monic polynomial of degree 3 with coefficients in F. Let E be a
splitting field of f over F', let a1, a2, a3 be the roots of f in £ and let G¢ be the Galois group of f over F. Set

5 = (042 — Oél)(Oég — Oél)(ag — 012).
(a) For a permutation o € &3, set
0o = (Ag(2) = Qo)) (Ae(3) — Qo(1)) (Qo(3) — QAo (2))-

Check
5 — —6 if o is a transposition (1,2), (1,3), (2,3),
7 16 if o belongs to the cyclic subgroup Cs = {1,(1,2,3),(1,3,2)} of &3.

(b) Deduce that A = §2 belongs to F.

(c) Check that Gy contains a transposition if and only if A is not a square in F.
(d) Deduce that G is

e the cyclic group Cj of order 3 if A is a square in F,

e the symmetric group &3 of order 6 if A is not a square in F'.

Solution.
(a) is trivial.
(b) From o(A) = 0(§)? = 62 = A for all 0 € Gy it follows that A belongs to the fixed field of Gal(E/F) which is F.
(c) If 6 € F, then by Galois Theory o(d) = ¢ for all ¢ € Gy hence Gy contains no transposition.
If § € F, then by Galois Theory there exists o € G such that (J) # ¢ hence G contains a transposition.
(d) The order of the group G is a multiple of 3 since E contains F'(c;) which has degree 3 over F. Hence Gy contains
the subgroup C3 which is the only subgroup of &3 of order 3.
The only subgroup of &3 which contains no transposition and is # (1) is the cyclic group C5 = {1, (1,2,3),(1,3,2)}
of order 3. Hence if Gy contains no transposition then Gy = Cj.
If Gy contains a transposition, then since Gy also contains C3 we have Gy = Gs.

Remark. Write f(X) = X3 + aX? + bX + c. The relation
X34 aX? 40X +c=(X —a1)(X — ) (X —a3)
is equivalent to
a1 +ag+ a3 =—a, «aqias+ aza; +agas =b, aiasaz = —c.

By expanding the formula
A= (o — 041)2(% - 041)2(043 - a2)2

one can deduce that the discriminant is

A = a?b? + 18abc — 4b> — 4ac® — 272,

(a) For each of the prime numbers p = 3, 5, 7, 11, 13, 17, is the regular polygon with p sides constructible or not?
(b) Using
641 =5 +2* =5.27 41,



check that the Fermat number F5 = 22 4+ 1 is divisible by 641.
Hint. What is the inverse of 5% in the field Fgqq1?

Solution. (a) The answer is yes for p = 3, 5 and 17 which are Fermat primes of the form F,, = 22" +1:
3=F, 5=F, 17=F,

but not for 7, 11, 13, since for these primes p the number p — 1 is not a power of 2.
(b) We have 5-27 = —1 mod 641, hence 5% - 2228 = 1 mod 641. Therefore the inverse of 5% in the field Fgy; is 228.
Since 5% = —2% mod 641, we deduce

2% = —1 mod 641.
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