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Module 3 — Problem Set 1 (MW) - Solutions

1.
(a) Let t € Z. Check that the polynomial f(X) = X3 —tX? — (t 4+ 3)X — 1 is irreducible in Z[X].
(b) Let « be a root of f in a splitting field over Q. Check that =2=1 is also a root of f in the field E = Q(a).
(¢) What is the order of the matrix (_11 _01> in the group GL2(Q) of regular 2 x 2 matrices with coefficients in Q7
(d) Find the third root of f in E.
(e) What is the group Aut(E/Q)?
Solution.

(a) For a monic polynomial, irreducibility over Z or over Q is the same. To check that a polynomial of degree 3 is
irreducible over a field amounts to check that it has no root in this field. Since f is monic with constant coefficient 1,
we just need to check that f(1) and f(—1) are not 0, which is true.

(b) Set 8 = %’1 We have o = 5;4_11 The equation

o —ta? —(t+3)a—1=0

yields
—1—tB+ 1)+ (E+3)(B+1)° - (B+1)° =0,

from which we deduce
B —tp% —(t+3)3—1=0.

(-1 -1 , (0 1
(C)SetM(1 0).Wehave]\/[ <_1 1

group GL2(Q) of regular 2 x 2 matrices with coefficients in Q.

) and M3 = I (the identity matrix). Hence M has order 3 in the

—z—1
z

(d) The fractional linear transformation z —

2 e =1
M?*, hence it is o

(e) The field E is a Galois extension of Q of degree 3 with Galois group Aut(E/Q) the cyclic group of order 3.

is associated with the matrix M, the third root is associated with

2. Let F be a finite field. Let p be the characteristic of F' and ¢ = p” the number of elements in F'.
(a) Check
X1-X=]][X-a).
aEF
Deduce that F' is a splitting field of X? — X over the prime field F,,.

(b) Show that there exists an element « in F' such that F' = F,(«).
Hint. Recall that any finite subgroup of the multiplicative group of a field is cyclic.

(c) Let g € F,[X] and let v be a root of g in F. Check that + is also a root of g. Deduce that for any j > 0, AP is a
root of g in F.

(d) Let « be a generator of the cyclic group F'* and let f be its irreducible polynomial over F,,. Check

r—1

) =[x -a).

Jj=0

(e) Deduce that F' is a Galois extension of F,, with a cyclic Galois group of order r, generated by the Frobenius
T — P,

(f) Give the list of the subfields of F’; for each of them, give its Galois group over F,,. .



Solution.

(a) Since the multiplicative group F* of F has ¢ — 1 elements, any nonzero element x in F satisfies 297! = 1, hence
any element x in F satisfies 7 = x. The polynomial X7 — X has ¢ simple roots in F', hence F' is the set of roots of this
polynomial. The field F is generated by the roots of X9 — X, hence it is the splitting field over F, of this polynomial.

(b) Let « be a generator of the cyclic group F*. Then
F={0,1,0,0%, ..., %}

and therefore F' = F,,[a] = F,(a). As a consequence « has degree r = [F : F)] over F,,.

(c) Applying the Frobenius @, : x — 2, we deduce
0=2,(0) = D,(9(7)) = 9(®p(7)) = 9("),

hence g(«?) = 0. Now ~P is root of g, hence (y?)P = 71’2 also, and by induction we deduce that for any j > 0, 'ypj isa
roof of g.

(e) Since « has multiplicative order ¢ — 1, the r conjugates a, a?, ... ,apr_l are distinct. Since a has degree r over F,,,
these are all the conjugates. Hence
r—1
j
FX) = TI(x —a).
§=0

(f) Since F' = Fp[a], an automorphism of F' (which is an F,, automorphism since F), is the prime field) is determined
by its value at «, which is a conjugate of . Hence there are at most r automorphisms. From (e) it follows that
I,®,, <I>Z2), cee @;_1 are distinct elements in Aut(F') = Gal(F/F,), therefore Gal(F/F,) = {I, ®,, <I>12), cee CI);_l}.
(g) By the fundamental theorem of Galois Theory there is a one to one correspondence between the subfields of F' and
the subgroups of Gal(F/F,). For each divisor d of r, the cyclic group Gal(F/F,) of order r has a unique subgroup Hy
of order d, and this subgroup is cyclic. The fixed field FH4 of F is an extension of F, of degree r/d, hence is a field
with p"/¢ elements.

Replacing d by r/d, it means that for each d dividing r, the field F' contains a unique subfield with p? elements
which is Galois over F,, with cyclic Galois group of order d.

3. Let E be the splitting field of the polynomial X4 — 2 over Q.

(a) Compute the irreducible polynomials over Q of
i+V2, (1+i)V2, (1—i)V2.

What is the degree of E over Q? Show that E is also be the splitting field of the polynomial X* 4 8 over Q.
(b) Show that the Galois group of E over Q can be written

{1,0,0% 0, 7,07, 0%, 0%}

with o of order 4 and 7 of order 2 and 70 = o°7.

(¢) Check that G has

e One subgroup of order 1,

e 5 subgroups of order 2, generated respectively by o2, 7, o7, 0?71, 037,

e 3 subgroup of order 4, one of them is cyclic generated by o (or by ¢2), the two others are {1,02 07,027}, and
{1,0%, 1,07},

e One subgroup of order 8

and no other subgroup.

(d) Deduce the list of all subfields of E. For each of them, find an element v such that this field is Q(v). Is Q(v) a
Galois extension of Q7 If so, what is its Galois group?

(e) Let 8 and 32 be two roots of X* — 2 in E. Which one is the field Q(31, B2)?

Solution.

(a) Write o = /2 for the real 4-th root of 2. Hence o? = /2. Since X* — 2 is irreducible over Q (there are several
proofs of this easy fact) the degree of the stem field Q(a) of X* —2 over Q is 4. Since X* — 2 has non real roots, Q(c)
is not a splitting field of X* — 2 over Q. The four roots of X* — 2 are «, icr, —a and —ic. Hence a splitting field of
X* —2over Qis E = Q(a, i), which is therefore a Galois extension of Q of degree 8.

The irreducible polynomial over Q of i + /2 is X4 —2X?2 4 9.

The polynomial X* + 8 is irreducible over Q, its roots are in E, they are (1 +i)v/2, (1 —4)v/2, (=1 4+ i)v/2,
(=1 —4)+v/2. Tt follows that the splitting field of this polynomial is E.



(b) Let G = Gal(E/Q). The extension E/Q(i) has degree 4, therefore the polynomial X4 — 2 is irreducible over Q(i),
hence there exists an automorphism ¢ of E which maps « to i« and i to i. Let 7 be the complex conjugation, which

maps « to a and 7 to —i. One deduces

with 0 = 72 = 1 and o7 = 70°. The images of o = v/2, i, a2

the following table.

Gal(E/Q) ={1,0, 02,0, 1,70, 7'0277'03}

=2, ia® = iv2, (1 +14)v/2, (1 —i)+v/2 are given by

V2 i [ V2 Ve ] +a)v2e | (1-9)V2
1 V2 i | V22 +ave | 1-9)v2
o | V2 | i | V2| —ivV2 | (m14+0)V2 | (1+49)vV2
o2 | V2 i [ V2 e (1 =)vR | (—1+i)v2
o3 | —iv2 | i | V2| =iv2 | 1—i)V2 | (-1-i)V2
| V2 =i V2 =2 A-0)v2 | 1+i)V2
o | —iv2 | —i | V2| V2 | (-1-)V2 ]| (1-i)v2
ol | V2 [ =i | V2 | V2 [ (-14+0V2 | (-1-9)V2
oS | V2 [ =i | V2] V2 [ 1+i)V2 | (-1+0)V2

We can also represent the group G as a subgroup of the permutation group &4 on four symbols {1,2,3,4} (the
group of symmetries of the square), by numbering the roots of X* — 2 as

ay =a, az=1ia, «az3=—a and ay = —iaq,

in which case o = (1,2,3,4) and 7 = (2,4). This enables ones to check easily

0? =(1,3)(2,4), o0®=(1,4,3,2), 70=0T=(1,4)(2,3), o*r=10%=(1,3), 70°=071=(1,2)(3,4).

(c) The elements o and 02 = o~! have order 4, the elements o2, 7, 70, 702, 703 have order 2. The element o>

commutes with all elements: the subgroup {1,02} is the center of G. The elements o2, 7,702 have order 2 and
commute, the elements 02, 70,702 also have order 2 and commute. Hence there are 5 subgroups of order 2,

Hy={1,0%}, Hy={l,7}, Hy={l,70}, Hs;={l,70%}, Hy={l1,70%},

one cyclic subgroup of order 4, namely Ny = {1,0,02%,0%}, and two noncyclic subgroups of order 4 (products of two
cyclic groups of order 4), which are

Ny ={1,0%,7,76%} and Ny ={1,0% 70,75°%}.

(d) The fixed fields by the cyclic subgroups of order 2 generated respectively by

0'2 T TO 7'0'2 7'0'3

are the following extensions of Q of degree 4 (quartic extensions):
EMo = Q(i, V2), =Q(v2), ET=Q-i)v2), ET=Qiv2), E"=Q(1+i)V2)

The only quartic extension of Q contained in E which is Galois over Q is EHo = Q(i,/2) = Q(i + v/2), which is the
splitting field over Q of X* + 1, namely the field of 8-th roots of unity: the four roots of X* 4 1 are
V2 V2 V2 V2

(1+z‘)7, (1—1')7, (—1+i)7, (—1—2')7,

Ef

which are the 4 primitive 8-th roots of unity (the 4 elements of order 8). The Galois group over Q of Q(i,/2) is non
cyclic of order 4, product of two cyclic groups of order 2.

The fixed field ENo of the subgroup Ny of G is Q(i), the fixed field EN of the subgroup N; of G is Q(v/2), the
fixed field EN? of the subgroup Ny of G is Q(iv/2). The subgroups of order 4 have index 2 hence are normal: the
quadratic extensions Q(i), Q(v/2) and Q(iv/2) are cyclic over Q.

The extensions E/Ef: for i = 0,1,2,3,4 are quadratic, the Galois group of E/EH: is H;, cyclic of order 2. The
extensions E/EN: for i = 0, 1,2, are quartic, the Galois group of E/EN¢ is N;, of order 4, with Ny cyclic and Ny, N
products of two cyclic groups. .

(e) If we choose 1 = « and By = —a, then Q(81,82) = Q(«), a non Galois quartic extension of Q. If we choose
81 = a and By = i then Q(81, 82) = Q(«v, 1), a Galois extension of Q of degree 8. Hence the answer depends on the
choice of 1 and S5 (cf Milne, p.30, line -10).
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