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Module 3 — Problem Set 1 (MW) - Solutions

1.

(a) Let t ∈ Z. Check that the polynomial f(X) = X3 − tX2 − (t+ 3)X − 1 is irreducible in Z[X].

(b) Let α be a root of f in a splitting field over Q. Check that −α−1α is also a root of f in the field E = Q(α).

(c) What is the order of the matrix

(
−1 −1
1 0

)
in the group GL2(Q) of regular 2× 2 matrices with coefficients in Q?

(d) Find the third root of f in E.

(e) What is the group Aut(E/Q)?

Solution.

(a) For a monic polynomial, irreducibility over Z or over Q is the same. To check that a polynomial of degree 3 is
irreducible over a field amounts to check that it has no root in this field. Since f is monic with constant coefficient 1,
we just need to check that f(1) and f(−1) are not 0, which is true.

(b) Set β = −α−1
α . We have α = −1

β+1 . The equation

α3 − tα2 − (t+ 3)α− 1 = 0

yields
−1− t(β + 1) + (t+ 3)(β + 1)2 − (β + 1)3 = 0,

from which we deduce
β3 − tβ2 − (t+ 3)β − 1 = 0.

(c) Set M =

(
−1 −1
1 0

)
. We have M2 =

(
0 1
−1 −1

)
and M3 = I (the identity matrix). Hence M has order 3 in the

group GL2(Q) of regular 2× 2 matrices with coefficients in Q.

(d) The fractional linear transformation z 7→ −z−1
z is associated with the matrix M , the third root is associated with

M2, hence it is −1
α+1 .

(e) The field E is a Galois extension of Q of degree 3 with Galois group Aut(E/Q) the cyclic group of order 3.

2. Let F be a finite field. Let p be the characteristic of F and q = pr the number of elements in F .

(a) Check

Xq −X =
∏
α∈F

(X − α).

Deduce that F is a splitting field of Xq −X over the prime field Fp.
(b) Show that there exists an element α in F such that F = Fp(α).
Hint. Recall that any finite subgroup of the multiplicative group of a field is cyclic.

(c) Let g ∈ Fp[X] and let γ be a root of g in F . Check that γp is also a root of g. Deduce that for any j ≥ 0, γp
j

is a
root of g in F .

(d) Let α be a generator of the cyclic group F× and let f be its irreducible polynomial over Fp. Check

f(X) =

r−1∏
j=0

(X − αp
j

).

(e) Deduce that F is a Galois extension of Fp, with a cyclic Galois group of order r, generated by the Frobenius
x 7→ xp.

(f) Give the list of the subfields of F ; for each of them, give its Galois group over Fp. .
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Solution.

(a) Since the multiplicative group F× of F has q − 1 elements, any nonzero element x in F satisfies xq−1 = 1, hence
any element x in F satisfies xq = x. The polynomial Xq−X has q simple roots in F , hence F is the set of roots of this
polynomial. The field F is generated by the roots of Xq −X, hence it is the splitting field over Fq of this polynomial.

(b) Let α be a generator of the cyclic group F×. Then

F = {0, 1, α, α2, . . . , αq−2}

and therefore F = Fp[α] = Fp(α). As a consequence α has degree r = [F : Fp] over Fp.
(c) Applying the Frobenius Φp : x 7→ xp, we deduce

0 = Φp(0) = Φp(g(γ)) = g(Φp(γ)) = g(γp),

hence g(γp) = 0. Now γp is root of g, hence (γp)p = γp
2

also, and by induction we deduce that for any j ≥ 0, γp
j

is a
roof of g.

(e) Since α has multiplicative order q− 1, the r conjugates α, αp, . . . , αp
r−1

are distinct. Since α has degree r over Fp,
these are all the conjugates. Hence

f(X) =

r−1∏
j=0

(X − αp
j

).

(f) Since F = Fp[α], an automorphism of F (which is an Fp automorphism since Fp is the prime field) is determined
by its value at α, which is a conjugate of α. Hence there are at most r automorphisms. From (e) it follows that
I,Φp,Φ

2
p, . . . ,Φ

r−1
p are distinct elements in Aut(F ) = Gal(F/Fp), therefore Gal(F/Fp) = {I,Φp,Φ2

p, . . . ,Φ
r−1
p }.

(g) By the fundamental theorem of Galois Theory there is a one to one correspondence between the subfields of F and
the subgroups of Gal(F/Fp). For each divisor d of r, the cyclic group Gal(F/Fp) of order r has a unique subgroup Hd

of order d, and this subgroup is cyclic. The fixed field FHd of F is an extension of Fp of degree r/d, hence is a field
with pr/d elements.

Replacing d by r/d, it means that for each d dividing r, the field F contains a unique subfield with pd elements
which is Galois over Fp with cyclic Galois group of order d.

3. Let E be the splitting field of the polynomial X4 − 2 over Q.

(a) Compute the irreducible polynomials over Q of

i+
√

2, (1 + i)
4
√

2, (1− i) 4
√

2.

What is the degree of E over Q? Show that E is also be the splitting field of the polynomial X4 + 8 over Q.

(b) Show that the Galois group of E over Q can be written

{1, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}

with σ of order 4 and τ of order 2 and τσ = σ3τ .

(c) Check that G has
• One subgroup of order 1,
• 5 subgroups of order 2, generated respectively by σ2, τ , στ , σ2τ , σ3τ ,
• 3 subgroup of order 4, one of them is cyclic generated by σ (or by σ3), the two others are {1, σ2, στ, σ2τ}, and
{1, σ2, τ, σ3τ},
• One subgroup of order 8
and no other subgroup.

(d) Deduce the list of all subfields of E. For each of them, find an element γ such that this field is Q(γ). Is Q(γ) a
Galois extension of Q? If so, what is its Galois group?

(e) Let β1 and β2 be two roots of X4 − 2 in E. Which one is the field Q(β1, β2)?

Solution.

(a) Write α = 4
√

2 for the real 4–th root of 2. Hence α2 =
√

2. Since X4 − 2 is irreducible over Q (there are several
proofs of this easy fact) the degree of the stem field Q(α) of X4− 2 over Q is 4. Since X4− 2 has non real roots, Q(α)
is not a splitting field of X4 − 2 over Q. The four roots of X4 − 2 are α, iα, −α and −iα. Hence a splitting field of
X4 − 2 over Q is E = Q(α, i), which is therefore a Galois extension of Q of degree 8.

The irreducible polynomial over Q of i+
√

2 is X4 − 2X2 + 9.
The polynomial X4 + 8 is irreducible over Q, its roots are in E, they are (1 + i) 4

√
2, (1 − i) 4

√
2, (−1 + i) 4

√
2,

(−1− i) 4
√

2. It follows that the splitting field of this polynomial is E.

2



(b) Let G = Gal(E/Q). The extension E/Q(i) has degree 4, therefore the polynomial X4 − 2 is irreducible over Q(i),
hence there exists an automorphism σ of E which maps α to iα and i to i. Let τ be the complex conjugation, which
maps α to α and i to −i. One deduces

Gal(E/Q) = {1, σ, σ2, σ3, τ, τσ, τσ2, τσ3}

with σ4 = τ2 = 1 and στ = τσ3. The images of α = 4
√

2, i, α2 =
√

2, iα2 = i
√

2, (1 + i) 4
√

2, (1 − i) 4
√

2 are given by
the following table.

4
√

2 i
√

2 i
√

2 (1 + i) 4
√

2 (1− i) 4
√

2

1 4
√

2 i
√

2 i
√

2 (1 + i) 4
√

2 (1− i) 4
√

2

σ i 4
√

2 i −
√

2 −i
√

2 (−1 + i) 4
√

2 (1 + i) 4
√

2

σ2 − 4
√

2 i
√

2 i
√

2 (−1− i) 4
√

2 (−1 + i) 4
√

2

σ3 −i 4
√

2 i −
√

2 −i
√

2 (1− i) 4
√

2 (−1− i) 4
√

2

τ 4
√

2 −i
√

2 −i
√

2 (1− i) 4
√

2 (1 + i) 4
√

2

τσ −i 4
√

2 −i −
√

2 i
√

2 (−1− i) 4
√

2 (1− i) 4
√

2

τσ2 − 4
√

2 −i
√

2 −i
√

2 (−1 + i) 4
√

2 (−1− i) 4
√

2

τσ3 i 4
√

2 −i −
√

2 i
√

2 (1 + i) 4
√

2 (−1 + i) 4
√

2

We can also represent the group G as a subgroup of the permutation group S4 on four symbols {1, 2, 3, 4} (the
group of symmetries of the square), by numbering the roots of X4 − 2 as

α1 = α, α2 = iα, α3 = −α and α4 = −iα,

in which case σ = (1, 2, 3, 4) and τ = (2, 4). This enables ones to check easily

σ2 = (1, 3)(2, 4), σ3 = (1, 4, 3, 2), τσ = σ3τ = (1, 4)(2, 3), σ2τ = τσ2 = (1, 3), τσ3 = στ = (1, 2)(3, 4).

(c) The elements σ and σ3 = σ−1 have order 4, the elements σ2, τ , τσ, τσ2, τσ3 have order 2. The element σ2

commutes with all elements: the subgroup {1, σ2} is the center of G. The elements σ2, τ, τσ2 have order 2 and
commute, the elements σ2, τσ, τσ3 also have order 2 and commute. Hence there are 5 subgroups of order 2,

H0 = {1, σ2}, H1 = {1, τ}, H2 = {1, τσ}, H3 = {1, τσ2}, H4 = {1, τσ3},

one cyclic subgroup of order 4, namely N0 = {1, σ, σ2, σ3}, and two noncyclic subgroups of order 4 (products of two
cyclic groups of order 4), which are

N1 = {1, σ2, τ, τσ2} and N2 = {1, σ2, τσ, τσ3}.

(d) The fixed fields by the cyclic subgroups of order 2 generated respectively by

σ2 τ τσ τσ2 τσ3

are the following extensions of Q of degree 4 (quartic extensions):

EH0 = Q(i,
√

2), EH1 = Q(
4
√

2), EH2 = Q((1− i) 4
√

2), EH3 = Q(i
4
√

2), EH4 = Q((1 + i)
4
√

2).

The only quartic extension of Q contained in E which is Galois over Q is EH0 = Q(i,
√

2) = Q(i+
√

2), which is the
splitting field over Q of X4 + 1, namely the field of 8-th roots of unity: the four roots of X4 + 1 are

(1 + i)

√
2

2
, (1− i)

√
2

2
, (−1 + i)

√
2

2
, (−1− i)

√
2

2
,

which are the 4 primitive 8–th roots of unity (the 4 elements of order 8). The Galois group over Q of Q(i,
√

2) is non
cyclic of order 4, product of two cyclic groups of order 2.

The fixed field EN0 of the subgroup N0 of G is Q(i), the fixed field EN1 of the subgroup N1 of G is Q(
√

2), the
fixed field EN2 of the subgroup N2 of G is Q(i

√
2). The subgroups of order 4 have index 2 hence are normal: the

quadratic extensions Q(i), Q(
√

2) and Q(i
√

2) are cyclic over Q.
The extensions E/EHi for i = 0, 1, 2, 3, 4 are quadratic, the Galois group of E/EHi is Hi, cyclic of order 2. The

extensions E/ENi for i = 0, 1, 2, are quartic, the Galois group of E/ENi is Ni, of order 4, with N0 cyclic and N1, N2

products of two cyclic groups. .

(e) If we choose β1 = α and β2 = −α, then Q(β1, β2) = Q(α), a non Galois quartic extension of Q. If we choose
β1 = α and β2 = iα then Q(β1, β2) = Q(α, i), a Galois extension of Q of degree 8. Hence the answer depends on the
choice of β1 and β2 (cf Milne, p.30, line -10).

http://www.rnta.eu/nap/nap-2018/
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