
NAP 2018 Module 2 Homework 2: solutions.

1. Let p be a prime. Show that Xp −X ∈ Fp[X] is separable, while Xp − 1 ∈ Fp[X] is not. How many
zeroes do these polynomials have in Fp?

Sol.: Recall that by definition a polynomial is separable if all its zeros are distinct in any splitting field.
Equivalently, if gcd(f, f ′) = 1 (see Milne, Prop. 2.13). Since f ′(X) = pXp−1 − 1 = −1 ∈ Fp[X], it is clear
that gcd(f, f ′) = 1 and f is separable. If we write f(X) = X(Xp−1 − 1), we see that the p elements of Fp

are the distinct zeros of f in Fp: by Little Fermat’s theorem, one has in fact that ap−1 − 1 = 0, for every
a ∈ Fp \ {0}.
Since g′(X) = pXp = 0 ∈ Fp[X], we have that gcd(g′, g) = g 6= 1. Hence g is not separable. One can also
see directly that g(X) = Xp − 1 = (X − 1)p has 1 as a unique zero of multiplicity p.

2. Let n ≥ 3.
(a) Let α be a zero of Xn − 1 ∈ Q[X]. Show that Q(α) is a normal extension of Q.
(b) Let β be a zero of Xn − 2 ∈ Q[X]. Show that Q(β) is not a normal extension of Q.

Sol.: (a) Let α be a zero of Xn − 1 ∈ Q[X] and let d be its order. Then α is a primitive root of Xd − 1 and
all other zeroes are powers of α. Therefore Q(α) is a splitting field of the separable polynomial Xd − 1 and
hence it is normal over Q.

(b) For example take β = n
√

2. Then Q(β) is strictly contained in the splitting field of f(X) = Xn − 2,
which is given by Qf = Q( n

√
2, ζn), where ζn is a primitive nth root of 1. Note that while Q( n

√
2) can be

embedded in R, the field Q( n
√

2, ζn) cannot.

3. Let ζ9 ∈ C denote a primitive 9-th root of unity and let F = Q(ζ9).
(a) Show that the factorization into irreducible factors of x9 − 1 over Q is given by

(x9 − 1) = (x− 1)(x2 + x+ 1)(x6 + x3 + 1).

(b) Show that AutQ(F) is isomorphic to Z/9Z∗ ∼= Z/6Z.
(c) Exhibit γ ∈ F so that [Q(γ) : Q] = 3.

Sol.: (a) The factor x2 + x + 1 is irreducible over Q because it does not vanish in ±1, which are the only
potental rational roots. To check that x6 +x3 + 1 is irreducible, we perform the change of variable x = y+ 1
and obtain

(y + 1)6 + (y + 1)3 + 1 = y6 + 6y5 + 15y4 + 21y3 + 18y2 + 9y + 3.

By the Eisenstein criterion for p = 3, we can conclude that y6 + 6y5 + 15y4 + 21y3 + 18y2 + 9y + 3 and
therefore x6 + x3 + 1 is irreducible.

(b) Since ζ9 is a zero of the degree 6 irreducible polynomial x6 + x3 + 1, we deduce that [Q(ζ9) : Q] = 6.
The group AutQ(F) = HomQ(Q(ζ9),Q(ζ9)) is in 1-1 correspondence with the zeros of x6 + x3 + 1 in Q(ζ9),
namely the powers of ζ9 with exponent coprime with 9

ζ9, ζ
2
9 , ζ

4
9 , ζ

5
9 , ζ

7
9 , ζ

8
9 .

Each of the above zeros determines the automorphism φi(ζ9) = ζi9 and an isomorphism (AutQ(F), ◦) →
(Z/9Z∗, ·) is given by φi 7→ i. One can check that φi ◦ φj 7→ i · j.

(c) Consider the automorphism determined by φ8(ζ9) = ζ89 = ζ9. Then φ8 is an element of order two in
AutQ(F). In fact φ8(φ8(ζ9)) = ζ649 = ζ9. Denote by G the subgroup of AutQ(F) generated by φ8. Then
[Q(ζ9) : Q(ζ9)G] = #G = 2 and [Q(ζ9)G : Q] = 3. Now it is clear that as the element γ we can take ζ9 + ζ9.
It remains to observe that ζ9 + ζ9 = 2 cos 2π/9 6∈ Q.

4. Let R be the ring Q[X]/(X4 +X + 1). For a polynomial g(X) ∈ Q[X], we write g(X) for its canonical
image in R.
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(a) Show that every element of R can be represented by a polynomial in Q[X] of degree ≤ 3.

(b) Let g(X) = X2+1. Compute g(X)
2
and represent the result by a polynomial inQ[X] of degree ≤ 3.

Sol.: (a) Every element f ∈ R can be represented by the remainder of the division of f by g, which is a
polynomial in Q[X] of degree ≤ 3.

(b) One has g(X)2 = (X2 + 1)(X2 + 1) = X4 + 2X2 + 1. Using the relation X4 = −1, one obtains
g(X)2 = −1 + 2X2 + 1 = 2X2.
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