1. Let p be a prime. Show that $X^p - X \in \mathbf{F}_p[X]$ is separable, while $X^p - 1 \in \mathbf{F}_p[X]$ is not. How many zeroes do these polynomials have in \mathbf{F}_p ?

Sol.: Recall that by definition a polynomial is separable if all its zeros are distinct in any splitting field. Equivalently, if gcd(f, f') = 1 (see Milne, Prop. 2.13). Since $f'(X) = pX^{p-1} - 1 = -1 \in \mathbf{F}_p[X]$, it is clear that gcd(f, f') = 1 and f is separable. If we write $f(X) = X(X^{p-1} - 1)$, we see that the p elements of \mathbf{F}_p are the distinct zeros of f in \mathbf{F}_p : by Little Fermat's theorem, one has in fact that $a^{p-1} - 1 = 0$, for every $a \in \mathbf{F}_p \setminus \{0\}$.

Since $g'(X) = pX^p = 0 \in \mathbf{F}_p[X]$, we have that $gcd(g', g) = g \neq 1$. Hence g is not separable. One can also see directly that $g(X) = X^p - 1 = (X - 1)^p$ has 1 as a unique zero of multiplicity p.

- 2. Let $n \geq 3$.
 - (a) Let α be a zero of $X^n 1 \in \mathbf{Q}[X]$. Show that $\mathbf{Q}(\alpha)$ is a normal extension of \mathbf{Q} .
 - (b) Let β be a zero of $X^n 2 \in \mathbf{Q}[X]$. Show that $\mathbf{Q}(\beta)$ is not a normal extension of \mathbf{Q} .

Sol.: (a) Let α be a zero of $X^n - 1 \in \mathbf{Q}[X]$ and let d be its order. Then α is a primitive root of $X^d - 1$ and all other zeroes are powers of α . Therefore $\mathbf{Q}(\alpha)$ is a splitting field of the separable polynomial $X^d - 1$ and hence it is normal over \mathbf{Q} .

(b) For example take $\beta = \sqrt[n]{2}$. Then $\mathbf{Q}(\beta)$ is strictly contained in the splitting field of $f(X) = X^n - 2$, which is given by $\mathbf{Q}_f = \mathbf{Q}(\sqrt[n]{2}, \zeta_n)$, where ζ_n is a primitive n^{th} root of 1. Note that while $\mathbf{Q}(\sqrt[n]{2})$ can be embedded in \mathbf{R} , the field $\mathbf{Q}(\sqrt[n]{2}, \zeta_n)$ cannot.

3. Let ζ₉ ∈ C denote a primitive 9-th root of unity and let F = Q(ζ₉).
(a) Show that the factorization into irreducible factors of x⁹ − 1 over Q is given by

$$(x^{9} - 1) = (x - 1)(x^{2} + x + 1)(x^{6} + x^{3} + 1).$$

- (b) Show that $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{F})$ is isomorphic to $\mathbf{Z}/9\mathbf{Z}^* \cong \mathbf{Z}/6\mathbf{Z}$.
- (c) Exhibit $\gamma \in \mathbf{F}$ so that $[\mathbf{Q}(\gamma) : \mathbf{Q}] = 3$.

Sol.: (a) The factor $x^2 + x + 1$ is irreducible over **Q** because it does not vanish in ± 1 , which are the only potential rational roots. To check that $x^6 + x^3 + 1$ is irreducible, we perform the change of variable x = y + 1 and obtain

$$(y+1)^6 + (y+1)^3 + 1 = y^6 + 6y^5 + 15y^4 + 21y^3 + 18y^2 + 9y + 3.$$

By the Eisenstein criterion for p = 3, we can conclude that $y^6 + 6y^5 + 15y^4 + 21y^3 + 18y^2 + 9y + 3$ and therefore $x^6 + x^3 + 1$ is irreducible.

(b) Since ζ_9 is a zero of the degree 6 irreducible polynomial $x^6 + x^3 + 1$, we deduce that $[\mathbf{Q}(\zeta_9) : \mathbf{Q}] = 6$. The group $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{F}) = \operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\zeta_9), \mathbf{Q}(\zeta_9))$ is in 1-1 correspondence with the zeros of $x^6 + x^3 + 1$ in $\mathbf{Q}(\zeta_9)$, namely the powers of ζ_9 with exponent coprime with 9

$$\zeta_9, \ \zeta_9^2, \ \zeta_9^4, \ \zeta_9^5, \ \zeta_9^7, \ \zeta_9^8$$

Each of the above zeros determines the automorphism $\phi_i(\zeta_9) = \zeta_9^i$ and an isomorphism $(\operatorname{Aut}_{\mathbf{Q}}(\mathbf{F}), \circ) \to (\mathbf{Z}/9\mathbf{Z}^*, \cdot)$ is given by $\phi_i \mapsto i$. One can check that $\phi_i \circ \phi_j \mapsto i \cdot j$.

(c) Consider the automorphism determined by $\phi_8(\zeta_9) = \zeta_9^8 = \overline{\zeta}_9$. Then ϕ_8 is an element of order two in Aut_{**Q**}(**F**). In fact $\phi_8(\phi_8(\zeta_9)) = \zeta_9^{64} = \zeta_9$. Denote by *G* the subgroup of Aut_{**Q**}(**F**) generated by ϕ_8 . Then $[\mathbf{Q}(\zeta_9): \mathbf{Q}(\zeta_9)^G] = \#G = 2$ and $[\mathbf{Q}(\zeta_9)^G: \mathbf{Q}] = 3$. Now it is clear that as the element γ we can take $\zeta_9 + \overline{\zeta}_9$. It remains to observe that $\zeta_9 + \overline{\zeta}_9 = 2 \cos 2\pi/9 \notin \mathbf{Q}$.

4. Let R be the ring $\mathbf{Q}[X]/(X^4 + X + 1)$. For a polynomial $g(X) \in \mathbf{Q}[X]$, we write $\overline{g(X)}$ for its canonical image in R.

- (a) Show that every element of R can be represented by a polynomial in $\mathbf{Q}[X]$ of degree ≤ 3 .
- (b) Let $g(X) = X^2 + 1$. Compute $\overline{g(X)}^2$ and represent the result by a polynomial in $\mathbf{Q}[X]$ of degree ≤ 3 .

Sol.: (a) Every element $f \in R$ can be represented by the remainder of the division of f by g, which is a polynomial in $\mathbf{Q}[X]$ of degree ≤ 3 .

(b) One has $g(X)^2 = (X^2 + 1)(X^2 + 1) = X^4 + 2X^2 + 1$. Using the relation $X^4 = -1$, one obtains $g(X)^2 = -1 + 2X^2 + 1 = 2X^2$.