- 1. Let p be a prime. Show that $X^p X \in \mathbf{F}_p[X]$ is separable, while $X^p 1 \in \mathbf{F}_p[X]$ is not. How many zeroes do these polynomials have in \mathbf{F}_p ?
- 2. Let $n \geq 3$.

 - (a) Let α be a zero of $X^n 1 \in \mathbf{Q}[X]$. Show that $\mathbf{Q}(\alpha)$ is a normal extension of \mathbf{Q} . (b) Let β be a zero of $X^n 2 \in \mathbf{Q}[X]$. Show that $\mathbf{Q}(\beta)$ is not a normal extension of \mathbf{Q} .
- 3. Let $\zeta_9 \in \mathbf{C}$ denote a primitive 9-th root of unity and let $F = \mathbf{Q}(\zeta_9)$. (a) Show that the factorization into irreducible factors of $x^9 - 1$ over **Q** is given by

$$(x^{9}-1) = (x-1)(x^{2}+x+1)(x^{6}+x^{3}+1).$$

- (b) Show that $\operatorname{Aut}_{\mathbf{Q}}(F)$ is isomorphic to $\mathbf{Z}/9\mathbf{Z}^* \cong \mathbf{Z}/6\mathbf{Z}$.
- (c) Exhibit $\gamma \in F$ so that $[\mathbf{Q}(\gamma) : \mathbf{Q}] = 3$.
- 4. Let R be the ring $\mathbf{Q}[X]/(X^4 + X + 1)$. For a polynomial $g(X) \in \mathbf{Q}[X]$, we write $\overline{g(X)}$ for its canonical image in R.
 - (a) Show that every element of R can be represented by a polynomial in $\mathbf{Q}[X]$ of degree ≤ 3 .
 - (b) Let $g(X) = X^2 + 1$. Compute $\overline{g(X)}^2$ and represent the result by a polynomial in $\mathbf{Q}[X]$ of degree ≤ 3 .