NAP 2018 Module 2 Homework 1: solutions.

1. Determine the degree of the splitting field of the polynomial f = x* — 2 over the following
fields:
C, R, Q Q(V2), Q(V2).

Sol.: The polynomial f decomposes as
' = 2= (2 +V2)(@® - V) =z +iV2)(x —iV2)(x + V2)(x - V2).

a) The splitting field is C; = C (all roots of f are already in C) and [C¢ : C] = 1;
f f
b) The splitting field is Ry = R(£v/2, +iv/2) = R(i) = C and [C : R] = 2;
f

(c) The splitting field Q; = Q(v/2, —v/2,iv/2, —iv/2) = Q(V/2,14).

Let’s show that Q(v/2, —v/2,iv/2, —iv/2) = Q(v/2,1):

the inclusion Q({‘f, —v/2,iv/2, —1\4/5) - Q({L/i, i) is clear; to prove the opposite one it is sufficient
to note that i = iv/2/v2 € Q(v/2, —v2,iv/2, —iv/2).

The degree [Qy : Q] = 8:

Qs : Q] =[Q(V2,4) : Q(v2)][Q(v2) : Q], where [Q(+/2) : Q] = 4, because the polynomial z* —1,
which is the minimum polynomial of v/2 over Q, irreducible over Q, and [Q; : Q(v/2)] = 2, because
the polynomial 22 + 1, which is the minimum polynomial of i over Q(+/2), is irreducible.

(d) One has v/2 = (v/2)%. Hence Q(v/2) C Q(v/2). Since 22—+/2, which is the minimum polynomial
of v/2 is irreducible over Q(v/2), the inclusion Q(v/2) C Q(+v/2) is a quadratic extension. We already
observed in (c) that [Q(v/2,7) : Q(v/2)] = 2. Then [Q(v/2,7) : Q(+/2)] = 4.

(e) We already observed in (c) that [Q(v/2,1) : Q(v/2)] = 2.

2. (a) Show that there exist trascendental elements «, 3 € C such that their product is algebraic
over Q.
(b) Show that there exist trascendental elements o, 3 € C such that both their sum is algebraic
over Q.
(c) Let o, € C have the property that both their sum and their product are algebraic
over Q. Show that o and 3 themselves are algebraic over Q.

Sol.: (a) a = 7 is a trascendental element over Q and so is 3 = m~1. On the othet hand /3 = 1
is algebraic over Q.

(b) @ = 7 is a trascendental element over Q and so is § = —7w. On the othet hand oo+ 5 = 0 is
algebraic over Q.

(c) The elements « and 3 are roots of the degree 2 polynomial (z —a)(z — ) = 2% — (a+ B)z + af.
If a, 8 € C have the property that both their sum and their product are algebraic over Q, then
they are roots of a polynomial with algebraic coefficients, precisely in the finite degree extension

Q(a+ B,apb) of Q. Then
QC Q(a+B,a8) C Qo+ B,ab)(a,B)

is a chain of finite degree extensions and therefore algebraic. In particular, and « and 3 are
themselves algebraic over Q.
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3. Let (s =e5 = Y2 12 ¢ C.
(a) Show that (g is a primitive 8-th root of unity and determine its minimum polynomial
over Q.

(b) Show that Q(i) C Q(Cg) and that Q(v/2) C Q((s)-

(c¢) How many elements do the following sets have?

HomQ(Q(\/ﬁ% C)a HomQ(Q(CB)a C)v HomQ(\/i)(Q(§8)vc)

Sol.: (a) For simplicity set £ = (g. All eight roots of 1, namely +1, +i, :I:g + z? are powers of &:

£:?+i\é§7 52:7;7 53:—?+i\2§, 54:_17
5__ _Vv=& V= 6 _ T_ _ v V= 8

From the factorization 2% — 1 = (2 + 1)(2? + 1)(z + 1)(x — 1), it follows that £ is a zero of z* + 1,
which is irreducible over Q. Hence z* + 1 is the minimum polynomial of £.

(b) From &2 = i, it follows that i € Q(¢) and Q(i) C Q(€);

from & + ¢7 = /2, it follows that v/2 € Q(£) and Q(v2) C Q(&).

(c) Homq(Q(v/2), C) is in 1-1 correspondence with the zeros of #2 — 2 (the minimum polynomial
of v/2 over Q) in C. Hence it has 2 elements.

Homgq (Q((s), C) is in 1-1 correspondence with the zeros of 2* + 1 (the minimum polynomial of v/2
over Q) in C. Hence it has 4 elements.

Homg,,/5)(Q(¢s), C) is in 1-1 correspondence with the zeros of x? — /22 4+ 1 (the minimum poly-

nomial of £ over Q(v/2)) in C. Hence it has 2 elements.

4. Let p be a prime and let F be a field of characteristic p.
(a) Show that FP = {xP : x € F} is a subfield of F.
(b) When F = Z/pZ(x) is the field of rational functions in the variable z, compute [F : FP].

Sol.: (a) We need to show that F? is closed for addition, multiplication and inverse:

by the “freshman’s dream”, one has 2P 4 y? = (x + y)P, proving that sum of p‘* powers is a pt"
power; also —aP = (—z)P, proving that the opposite of a p'" power is a p'* power;

xPyP = (zy)P shows that product of p'" powers is a p'* power; finally, (2P)~! = 2P shows that
the multiplicative inverse of a p** power is a p'" power.

(b) By definition F = Z/pZ(x) = (£}, f.9 € Z/pZ[x]} and F* = (L&, [.g € Z/pZ[s]}. By
the “freshman’s dream” and the fact that Ya € Z/pZ one has a? = a (for example by Little Fermat
Theorem), given a polynomial h(z) = a,z™ + ... + a1 + ag, with a; € Z/pZ, then

h(z)? = (ana” + ... + a1z + ag)? = abz"™ + ...+ alaP + af = a2 + ...+ a12? + ao.

Hence, h(z)P = h(2P) and

F? = {%, f.9 € Z)pZla]} = Z/pZ(a®).



To compute the degree [F : FP| = [Z/pZ(x) : Z/pZ(zP)], set y = 2P and compute the degree

[Z/pZ(</y) : Z/pZ(y)].

As ¢/y is a zero of the degree p polynomial Z? — y, we have that [Z/pZ(¢/y) : Z/pZ(y)] = p
provided that ZP — y is irreducible in Z/pZ(y)[Z].

It was not required to prove the irreducibility of F(Z) = ZP — y, however here is an argument:

let y'/? denote a root of ZP — y in a splitting field L over F = F,(y). Then Z? —y = (Z — y'/P)?
in L[Z]. Let g € F[Z] be a monic irreducible divisor of Z? —y. Then g = (Z — y'/?)* € L[Z], for
some 1 < i < p. By Newton’s formula, g = ZP — i y*/? « ZP=1 4 However, g is in F[Z]. But
the coefficient 7 * y'/? is not in F, unless i = 0 mod p. So, 1 < i < p and p divides i = i = p and
g = ZP —y. So, ZP — y is irreducible.



