1. Determine the degree of the splitting field of the polynomial $f = x^4 - 2$ over the following fields:

$$\mathbf{C}$$
, \mathbf{R} , \mathbf{Q} , $\mathbf{Q}(\sqrt{2})$, $\mathbf{Q}(\sqrt[4]{2})$.

Sol.: The polynomial f decomposes as

$$x^{4} - 2 = (x^{2} + \sqrt{2})(x^{2} - \sqrt{2}) = (x + i\sqrt[4]{2})(x - i\sqrt[4]{2})(x + \sqrt[4]{2})(x - \sqrt[4]{2}).$$

- (a) The splitting field is $\mathbf{C}_f = \mathbf{C}$ (all roots of f are already in \mathbf{C}) and $[\mathbf{C}_f : \mathbf{C}] = 1$;
- (b) The splitting field is $\mathbf{R}_f = \mathbf{R}(\pm \sqrt[4]{2}, \pm i\sqrt[4]{2}) = \mathbf{R}(i) = \mathbf{C}$ and $[\mathbf{C}:\mathbf{R}] = 2$;
- (c) The splitting field $\mathbf{Q}_f = \mathbf{Q}(\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2}) = \mathbf{Q}(\sqrt[4]{2}, i).$
- Let's show that $\mathbf{Q}(\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2}) = \mathbf{Q}(\sqrt[4]{2}, i)$:

the inclusion $\mathbf{Q}(\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2}) \subset \mathbf{Q}(\sqrt[4]{2}, i)$ is clear; to prove the opposite one it is sufficient to note that $i = i\sqrt[4]{2}/\sqrt[4]{2} \in \mathbf{Q}(\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2})$.

The degree $[\mathbf{Q}_f : \mathbf{Q}] = 8$:

 $[\mathbf{Q}_f:\mathbf{Q}] = [\mathbf{Q}(\sqrt[4]{2},i):\mathbf{Q}(\sqrt[4]{2})][\mathbf{Q}(\sqrt[4]{2}):\mathbf{Q}], \text{ where } [\mathbf{Q}(\sqrt[4]{2}):\mathbf{Q}] = 4, \text{ because the polynomial } x^4 - 1, \text{ which is the minimum polynomial of } \sqrt[4]{2} \text{ over } \mathbf{Q}, \text{ irreducible over } \mathbf{Q}, \text{ and } [\mathbf{Q}_f:\mathbf{Q}(\sqrt[4]{2})] = 2, \text{ because the polynomial } x^2 + 1, \text{ which is the minimum polynomial of } i \text{ over } \mathbf{Q}(\sqrt[4]{2}), \text{ is irreducible.}$

(d) One has $\sqrt{2} = (\sqrt[4]{2})^2$. Hence $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\sqrt[4]{2})$. Since $x^2 - \sqrt{2}$, which is the minimum polynomial of $\sqrt[4]{2}$ is irreducible over $\mathbf{Q}(\sqrt{2})$, the inclusion $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\sqrt[4]{2})$ is a quadratic extension. We already observed in (c) that $[\mathbf{Q}(\sqrt[4]{2},i):\mathbf{Q}(\sqrt[4]{2})] = 2$. Then $[\mathbf{Q}(\sqrt[4]{2},i):\mathbf{Q}(\sqrt{2})] = 4$.

- (e) We already observed in (c) that $[\mathbf{Q}(\sqrt[4]{2}, i) : \mathbf{Q}(\sqrt[4]{2})] = 2.$
 - 2. (a) Show that there exist trascendental elements $\alpha, \beta \in \mathbf{C}$ such that their product is algebraic over \mathbf{Q} .
 - (b) Show that there exist trascendental elements $\alpha, \beta \in \mathbf{C}$ such that both their sum is algebraic over \mathbf{Q} .
 - (c) Let $\alpha, \beta \in \mathbf{C}$ have the property that both their sum and their product are algebraic over \mathbf{Q} . Show that α and β themselves are algebraic over \mathbf{Q} .

Sol.: (a) $\alpha = \pi$ is a trascendental element over **Q** and so is $\beta = \pi^{-1}$. On the other hand $\alpha/\beta = 1$ is algebraic over **Q**.

(b) $\alpha = \pi$ is a trascendental element over **Q** and so is $\beta = -\pi$. On the other hand $\alpha + \beta = 0$ is algebraic over **Q**.

(c) The elements α and β are roots of the degree 2 polynomial $(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta$. If $\alpha, \beta \in \mathbf{C}$ have the property that both their sum and their product are algebraic over \mathbf{Q} , then they are roots of a polynomial with algebraic coefficients, precisely in the finite degree extension $\mathbf{Q}(\alpha + \beta, \alpha\beta)$ of \mathbf{Q} . Then

$$\mathbf{Q} \subset \mathbf{Q}(\alpha + \beta, \alpha\beta) \subset \mathbf{Q}(\alpha + \beta, \alpha\beta)(\alpha, \beta)$$

is a chain of finite degree extensions and therefore algebraic. In particular, and α and β are themselves algebraic over **Q**.

- 3. Let $\zeta_8 = e^{\frac{2\pi i}{8}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \in \mathbb{C}$. (a) Show that ζ_8 is a primitive 8-th root of unity and determine its minimum polynomial over Q.
 - (b) Show that $\mathbf{Q}(i) \subset \mathbf{Q}(\zeta_8)$ and that $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\zeta_8)$.
 - (c) How many elements do the following sets have?

 $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2}), \mathbf{C}), \quad \operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\zeta_8), \mathbf{C}), \quad \operatorname{Hom}_{\mathbf{Q}(\sqrt{2})}(\mathbf{Q}(\zeta_8), \mathbf{C})$

Sol.: (a) For simplicity set $\xi = \zeta_8$. All eight roots of 1, namely $\pm 1, \pm i, \pm \frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}$ are powers of ξ :

$$\begin{split} \xi &= \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \quad \xi^2 = i, \quad \xi^3 = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \quad \xi^4 = -1, \\ \xi^5 &= -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, \quad \xi^6 = -i, \quad \xi^7 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, \quad \xi^8 = 1. \end{split}$$

From the factorization $x^8 - 1 = (x^4 + 1)(x^2 + 1)(x + 1)(x - 1)$, it follows that ξ is a zero of $x^4 + 1$, which is irreducible over **Q**. Hence $x^4 + 1$ is the minimum polynomial of ξ .

(b) From $\xi^2 = i$, it follows that $i \in \mathbf{Q}(\xi)$ and $\mathbf{Q}(i) \subset \mathbf{Q}(\xi)$;

from $\xi + \xi^7 = \sqrt{2}$, it follows that $\sqrt{2} \in \mathbf{Q}(\xi)$ and $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\xi)$.

(c) Hom_{**Q**}($\mathbf{Q}(\sqrt{2}), \mathbf{C}$) is in 1-1 correspondence with the zeros of $x^2 - 2$ (the minimum polynomial of $\sqrt{2}$ over **Q**) in **C**. Hence it has 2 elements.

Hom_Q($\mathbf{Q}(\zeta_8), \mathbf{C}$) is in 1-1 correspondence with the zeros of $x^4 + 1$ (the minimum polynomial of $\sqrt{2}$ over \mathbf{Q}) in \mathbf{C} . Hence it has 4 elements.

 $\operatorname{Hom}_{\mathbf{Q}(\sqrt{2})}(\mathbf{Q}(\zeta_8), \mathbf{C})$ is in 1-1 correspondence with the zeros of $x^2 - \sqrt{2}x + 1$ (the minimum polynomial of ξ over $\mathbf{Q}(\sqrt{2})$ in **C**. Hence it has 2 elements.

- 4. Let p be a prime and let \mathbf{F} be a field of characteristic p.
 - (a) Show that $\mathbf{F}^p = \{x^p : x \in \mathbf{F}\}\$ is a subfield of \mathbf{F} .
 - (b) When $\mathbf{F} = \mathbf{Z}/p\mathbf{Z}(x)$ is the field of rational functions in the variable x, compute $[\mathbf{F} : \mathbf{F}^p]$.

Sol.: (a) We need to show that \mathbf{F}^p is closed for addition, multiplication and inverse:

by the "freshman's dream", one has $x^p + y^p = (x + y)^p$, proving that sum of p^{th} powers is a p^{th} power; also $-x^p = (-x)^p$, proving that the opposite of a p^{th} power is a p^{th} power;

 $x^p y^p = (xy)^p$ shows that product of p^{th} powers is a p^{th} power; finally, $(x^p)^{-1} = x^{-p}$ shows that the multiplicative inverse of a p^{th} power is a p^{th} power.

(b) By definition $\mathbf{F} = \mathbf{Z}/p\mathbf{Z}(x) = \{\frac{f(x)}{g(x)}, f, g \in \mathbf{Z}/p\mathbf{Z}[x]\}$ and $\mathbf{F}^p = \{\frac{f(x)^p}{g(x)^p}, f, g \in \mathbf{Z}/p\mathbf{Z}[x]\}$. By the "freshman's dream" and the fact that $\forall a \in \mathbf{Z}/p\mathbf{Z}$ one has $a^p = a$ (for example by Little Fermat Theorem), given a polynomial $h(x) = a_n x^n + \ldots + a_1 x + a_0$, with $a_i \in \mathbb{Z}/p\mathbb{Z}$, then

$$h(x)^{p} = (a_{n}x^{n} + \ldots + a_{1}x + a_{0})^{p} = a_{n}^{p}x^{np} + \ldots + a_{1}^{p}x^{p} + a_{0}^{p} = a_{n}x^{np} + \ldots + a_{1}x^{p} + a_{0}x^{p}$$

Hence, $h(x)^p = h(x^p)$ and

$$\mathbf{F}^p = \{ \frac{f(x^p)}{g(x^p)}, \ f, g \in \mathbf{Z}/p\mathbf{Z}[x] \} = \mathbf{Z}/p\mathbf{Z}(x^p).$$

To compute the degree $[\mathbf{F}:\mathbf{F}^p] = [\mathbf{Z}/p\mathbf{Z}(x):\mathbf{Z}/p\mathbf{Z}(x^p)]$, set $y = x^p$ and compute the degree

$$[\mathbf{Z}/p\mathbf{Z}(\sqrt[p]{y}):\mathbf{Z}/p\mathbf{Z}(y)].$$

As $\sqrt[p]{y}$ is a zero of the degree p polynomial $Z^p - y$, we have that $[\mathbf{Z}/p\mathbf{Z}(\sqrt[p]{y}) : \mathbf{Z}/p\mathbf{Z}(y)] = p$ provided that $Z^p - y$ is *irreducible* in $\mathbf{Z}/p\mathbf{Z}(y)[Z]$.

It was not required to prove the irreducibility of $F(Z) = Z^p - y$, however here is an argument: let $y^{1/p}$ denote a root of $Z^p - y$ in a splitting field \mathbf{L} over $\mathbf{F} = \mathbf{F}_p(y)$. Then $Z^p - y = (Z - y^{1/p})^p$ in $\mathbf{L}[Z]$. Let $g \in \mathbf{F}[Z]$ be a monic irreducible divisor of $Z^p - y$. Then $g = (Z - y^{1/p})^i \in \mathbf{L}[Z]$, for some $1 \leq i \leq p$. By Newton's formula, $g = Z^p - i * y^{1/p} * Z^{(p-1)} + \dots$ However, g is in $\mathbf{F}[Z]$. But the coefficient $i * y^{1/p}$ is not in \mathbf{F} , unless $i \equiv 0 \mod p$. So, $1 \leq i \leq p$ and p divides $i \Rightarrow i = p$ and $g = Z^p - y$. So, $Z^p - y$ is irreducible.