
NAP 2018 Module 2 Homework 1: solutions.

1. Determine the degree of the splitting field of the polynomial f = x4 − 2 over the following
fields:

C, R, Q, Q(
√

2), Q(
4
√

2).

Sol.: The polynomial f decomposes as

x4 − 2 = (x2 +
√

2)(x2 −
√

2) = (x+ i
4
√

2)(x− i 4
√

2)(x+
4
√

2)(x− 4
√

2).

(a) The splitting field is Cf = C (all roots of f are already in C) and [Cf : C] = 1;

(b) The splitting field is Rf = R(± 4
√

2,±i 4
√

2) = R(i) = C and [C : R] = 2;

(c) The splitting field Qf = Q( 4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2) = Q( 4
√

2, i).

Let’s show that Q( 4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2) = Q( 4
√

2, i):

the inclusion Q( 4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2) ⊂ Q( 4
√

2, i) is clear; to prove the opposite one it is sufficient
to note that i = i 4

√
2/ 4
√

2 ∈ Q( 4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2).

The degree [Qf : Q] = 8:
[Qf : Q] = [Q( 4

√
2, i) : Q( 4

√
2)][Q( 4

√
2) : Q], where [Q( 4

√
2) : Q] = 4, because the polynomial x4−1,

which is the minimum polynomial of 4
√

2 over Q, irreducible over Q, and [Qf : Q( 4
√

2)] = 2, because
the polynomial x2 + 1, which is the minimum polynomial of i over Q( 4

√
2), is irreducible.

(d) One has
√

2 = ( 4
√

2)2. Hence Q(
√

2) ⊂ Q( 4
√

2). Since x2−
√

2, which is the minimum polynomial
of 4
√

2 is irreducible over Q(
√

2), the inclusion Q(
√

2) ⊂ Q( 4
√

2) is a quadratic extension. We already
observed in (c) that [Q( 4

√
2, i) : Q( 4

√
2)] = 2. Then [Q( 4

√
2, i) : Q(

√
2)] = 4.

(e) We already observed in (c) that [Q( 4
√

2, i) : Q( 4
√

2)] = 2.

2. (a) Show that there exist trascendental elements α, β ∈ C such that their product is algebraic
over Q.

(b) Show that there exist trascendental elements α, β ∈ C such that both their sum is algebraic
over Q.

(c) Let α, β ∈ C have the property that both their sum and their product are algebraic
over Q. Show that α and β themselves are algebraic over Q.

Sol.: (a) α = π is a trascendental element over Q and so is β = π−1. On the othet hand α/β = 1
is algebraic over Q.

(b) α = π is a trascendental element over Q and so is β = −π. On the othet hand α + β = 0 is
algebraic over Q.

(c) The elements α and β are roots of the degree 2 polynomial (x−α)(x−β) = x2− (α+β)x+αβ.
If α, β ∈ C have the property that both their sum and their product are algebraic over Q, then
they are roots of a polynomial with algebraic coefficients, precisely in the finite degree extension
Q(α+ β, αβ) of Q. Then

Q ⊂ Q(α+ β, αβ) ⊂ Q(α+ β, αβ)(α, β)

is a chain of finite degree extensions and therefore algebraic. In particular, and α and β are
themselves algebraic over Q.



3. Let ζ8 = e
2πi
8 =

√
2
2 + i

√
2
2 ∈ C.

(a) Show that ζ8 is a primitive 8-th root of unity and determine its minimum polynomial
over Q.

(b) Show that Q(i) ⊂ Q(ζ8) and that Q(
√

2) ⊂ Q(ζ8).
(c) How many elements do the following sets have?

HomQ(Q(
√

2),C), HomQ(Q(ζ8),C), HomQ(
√
2)(Q(ζ8),C)

Sol.: (a) For simplicity set ξ = ζ8. All eight roots of 1, namely ±1, ±i, ±
√
2
2 ± i

√
2
2 are powers of ξ:

ξ =

√
2

2
+ i

√
2

2
, ξ2 = i, ξ3 = −

√
2

2
+ i

√
2

2
, ξ4 = −1,

ξ5 = −
√

2

2
− i
√

2

2
, ξ6 = −i, ξ7 = −

√
2

2
− i
√

2

2
, ξ8 = 1.

From the factorization x8 − 1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1), it follows that ξ is a zero of x4 + 1,
which is irreducible over Q. Hence x4 + 1 is the minimum polynomial of ξ.

(b) From ξ2 = i, it follows that i ∈ Q(ξ) and Q(i) ⊂ Q(ξ);
from ξ + ξ7 =

√
2, it follows that

√
2 ∈ Q(ξ) and Q(

√
2) ⊂ Q(ξ).

(c) HomQ(Q(
√

2),C) is in 1-1 correspondence with the zeros of x2 − 2 (the minimum polynomial
of
√

2 over Q) in C. Hence it has 2 elements.
HomQ(Q(ζ8),C) is in 1-1 correspondence with the zeros of x4 + 1 (the minimum polynomial of

√
2

over Q) in C. Hence it has 4 elements.
HomQ(

√
2)(Q(ζ8),C) is in 1-1 correspondence with the zeros of x2 −

√
2x+ 1 (the minimum poly-

nomial of ξ over Q(
√

2)) in C. Hence it has 2 elements.

4. Let p be a prime and let F be a field of characteristic p.
(a) Show that Fp = {xp : x ∈ F} is a subfield of F.
(b) When F = Z/pZ(x) is the field of rational functions in the variable x, compute [F : Fp].

Sol.: (a) We need to show that Fp is closed for addition, multiplication and inverse:
by the “freshman’s dream”, one has xp + yp = (x + y)p, proving that sum of pth powers is a pth

power; also −xp = (−x)p, proving that the opposite of a pth power is a pth power;
xpyp = (xy)p shows that product of pth powers is a pth power; finally, (xp)−1 = x−p shows that
the multiplicative inverse of a pth power is a pth power.

(b) By definition F = Z/pZ(x) = { f(x)g(x) , f, g ∈ Z/pZ[x]} and Fp = { f(x)
p

g(x)p , f, g ∈ Z/pZ[x]}. By

the “freshman’s dream” and the fact that ∀a ∈ Z/pZ one has ap = a (for example by Little Fermat
Theorem), given a polynomial h(x) = anx

n + . . .+ a1x+ a0, with ai ∈ Z/pZ, then

h(x)p = (anx
n + . . .+ a1x+ a0)p = apnx

np + . . .+ ap1x
p + ap0 = anx

np + . . .+ a1x
p + a0.

Hence, h(x)p = h(xp) and

Fp = {f(xp)

g(xp)
, f, g ∈ Z/pZ[x]} = Z/pZ(xp).



To compute the degree [F : Fp] = [Z/pZ(x) : Z/pZ(xp)], set y = xp and compute the degree

[Z/pZ( p
√
y) : Z/pZ(y)].

As p
√
y is a zero of the degree p polynomial Zp − y, we have that [Z/pZ( p

√
y) : Z/pZ(y)] = p

provided that Zp − y is irreducible in Z/pZ(y)[Z].

It was not required to prove the irreducibility of F (Z) = Zp − y, however here is an argument:

let y1/p denote a root of Zp − y in a splitting field L over F = Fp(y). Then Zp − y = (Z − y1/p)p

in L[Z]. Let g ∈ F[Z] be a monic irreducible divisor of Zp − y. Then g = (Z − y1/p)i ∈ L[Z], for
some 1 ≤ i ≤ p. By Newton’s formula, g = Zp − i ∗ y1/p ∗Z(p−1) + . . .. However, g is in F[Z]. But
the coefficient i ∗ y1/p is not in F, unless i ≡ 0 mod p. So, 1 ≤ i ≤ p and p divides i ⇒ i = p and
g = Zp − y. So, Zp − y is irreducible.


