1. Determine the degree of the splitting field of the polynomial $f = X^4 - 2$ over the following fields:

C, **R**, **Q**, **Q**(
$$\sqrt{2}$$
), **Q**($\sqrt[4]{2}$).

- 2. (a) Show that there exist trascendental elements $\alpha, \beta \in \mathbb{C}$ such that their product is algebraic over \mathbb{Q} .
 - (b) Show that there exist trascendental elements $\alpha, \beta \in \mathbf{C}$ such that both their sum is algebraic over \mathbf{Q} .
 - (c) Let $\alpha, \beta \in \mathbf{C}$ have the property that both their sum and their product are algebraic over \mathbf{Q} . Show that α and β themselves are algebraic over \mathbf{Q} .
- 3. Let $\zeta_8 = e^{\frac{2\pi i}{8}} \in \mathbf{C}$.
 - (a) Show that ζ_8 is a primitive 8-th root of unity and determine its minimum polynomial over \mathbf{Q} .
 - (b) Show that $\mathbf{Q}(i) \subset \mathbf{Q}(\zeta_8)$ and that $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\zeta_8)$.
 - (c) How many elements do the following sets have?

 $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2}),\mathbf{C}),\quad\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\zeta_8),\mathbf{C}),\quad\operatorname{Hom}_{\mathbf{Q}(\sqrt{2})}(\mathbf{Q}(\zeta_8),\mathbf{C})$

- 4. Let p be a prime and let \mathbf{F} be a field of characteristic p.
 - (a) Show that $\mathbf{F}^p = \{x^p : x \in \mathbf{F}\}$ is a subfield of \mathbf{F} .
 - (b) When $\mathbf{F} = \mathbf{Z}/p\mathbf{Z}(T)$ is the field of rational functions in the variable T, compute $[\mathbf{F} : \mathbf{F}^p]$.