
NAP PROBLEM SET #2: SOLUTIONS

ROGER AND SYLVIA WIEGAND

1. Let G be an abelian group, and let m and n be positive integers.

(a) If G has an element of order n and m | n, prove that G has an element of order
m.

(b) If G has an element x of order m and an element y of order n, and if m and n
are relatively prime, prove that xy has order mn.

(c) If G has an element x of order m and an element y of order n, prove that G
has an element whose order is the least common multiplie LCM(m,n). (You
may use without proof the standard fact that GCD(m,n) · LCM(m,n) = mn.)

(d) Assume G is finite and n is the maximum of orders of elements of G. (In other
words there is an element x such that o(x) = n, and o(y) ≤ n for every y ∈ G.)
Prove that gn = 1 for every g ∈ G.

(e) Conclude that the multiplicative group F\{0} of a finite field F must be cyclic.

Solution: (a) Let ord(x) = n, and write n = rm. Put y = xr. Then ym = (xr)
m

=
xrm = xn = 1. Also, if 1 ≤ ` < m, then 1 ≤ r ≤ r` < rm = ord(x), so xr` 6= 1, that
is, y` 6= 1. Thus m is the least positive integer for which ym = 1, so m = ord(y).

(b) (xy)mn = xmyn = 1 (since G is abelian). Suppose now that 1 ≤ ` and
(xy)` = 1. We want to show that ` ≥ mn. We have x` = y−` ∈ 〈x〉 ∩ 〈y〉.
Lagrange’s Theorem says that |〈x〉 ∩ 〈y〉| is a common divisor of |〈x〉| = m and
|〈y〉| = n, and hence 〈x〉 ∩ 〈y〉 = {1}. Therefore x` = 1, whence m | `; and y` = 1,
whence n | `. Therefore ` ≥ LCM(m,n) = mn. (Probably there’s a direct proof
that doesn’t use Lagrange’s Theorem.)

(c) (Ugh! I don’t see how to use the hint, so I will do a direct and messy

approach.) Write m = pe11 · · · pemm and n = pf11 · · · pfss , where the pi are the distinct
prime divisors of mn and ei, fi are non-negative integers. For each i, let gi =
max{ei, fi}. The LCM of m and n is is pg11 · · · pgss . For each i there is an element
of order pgii , by part (a). Now, using part (b) repeatedly, we build elements whose
orders are pg11 , p

g1
1 p

g2
2 , p

g1
1 p

g2
2 p

g3
3 , . . . , p

g1
1 · · · pgss . (I really hope someone finds a more

elegant approach!)
(d) Suppose, by way of contradiction, that there exists an element g for which

gn 6= 1, and let m be the order of g. Then m is not a divisor of n, so the LCM
` of m and n is strictly bigger than n. But by (c) there is an element of order `,
contradiction.

(e) Let G be the multiplicative group F \ {0}, and choose an element x ∈ G of
largest order, say n. By (d), we have gn = 1 for every g ∈ G. Since the polynomial
Xn − 1 ∈ F [X] has at most n roots in F , we have |G| ≤ n. Now

n = |〈x〉| ≤ |G| ≤ n ,

and hence 〈x〉 = G.

2 An element g of a group G is a square provided there exists an element h ∈ G
such that g = h2.

(a) If G is a finite cyclic group and g1 and g2 are elements of G, neither one of
which is a square, prove that g1g2 is a square.

(b) Let p be any prime number. Using the fact that the multiplicative group Fp\{0}
is cyclic, show that X4 − 10X2 + 1 is reducible in Fp[X]. (That is, fill in the
details of Footnote 3 at the bottom of page 13 of Milne.)
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Solution: (a) Let H = {g2 | g ∈ G}, and note that H is a subgroup of G since G
is abelian. Also G/G2 is a cyclic group in which every element has order 1 or 2,
and it follows that |G/H| ≤ 2. But the existence of the elements g1 and g2 says
that |G/H| = 2. The cosets g1 and g2 in G/H are then the same element of G/H,
namely the non-identity element. Their product must then be the identity element,
that is, g1g2 ∈ H. (By the way, |G/H| = 1 if and only if |G| is odd.)

(b) By Problem 1, G = Fp \ {0} is a cyclic group. The argument on page 13 of
Milne shows that f(X) := X4 − 10x2 + 1 factors non-trivially in Fp if either 2 or 3
is a square in G. In the remaining case, part (a) says that 6 must be a square, and
then the argument in Milne again shows that f(X) factors non-trivially.

3. Let F ⊆ K be a field extension. Let α be an element of K whose degree over F
is odd. Prove that F (α) = F (α2).

Solution: Since α is a root of the polynomial X2 − α2 ∈ F (α2)[X], we know that
[F (α) : F (α2)] ≤ 2. If [F (α) : F (α2)] = 2, we have

[F (α) : F ] = [F (α) : F (α2)][F (α2) : F ] = 2[F (α2) : F ] ,

contradicting the fact that [F (α) : F ] is odd. Therefore [F (α) : F (α2)] = 1, that is,
F (α) = F (α2). (The argument is much easier to follow if you draw the appropriate
picture and label degrees.)

4. Again, draw the picture and label the degrees. Let F ⊆ K be a field extension,
and let α and β be elements of of K whose degrees over F are m and n, respectively.
Prove that if GCD(m,n) = 1, then [F (α, β) : F ] = mn.

Solution: Let r = [F (α, β) : F (α)] and s = [F (α, β) : F (β)]. Let f(X) ∈ F [X] be
the minimal polynomial of β over F ; thus m = deg(f(X). Since f(X) ∈ F (α)[X]
and f(β) = 0, we see that r ≤ n. By multiplicativity of degrees, we have rm = sn;
thus n | rm, and since m and n are relatively prime we know that n | r. Since ≤ n
it follows that r = n. Now [F (α, β) : F = mr = mn.

5. Let F ⊆ K be a field extension, and let α and β be elements of K whose degrees
over F are m and n, respectively. Prove that α has degree m over F (β) if and only
if β has degree n over F (α).

Solution: Exactly the same picture as for Problem #4 applies here, with the same
degree labels. Now r is the degree of β over F (α) and s is the degree of α over
F (β). The equation rm = sn makes it obvious that s = m ⇐⇒ r = n.

6. Let F ⊆ K be a field extension, and let f(X) ∈ F [X] be a monic polynomial of
degree d. Let α be an element of K with f(α) = 0. Prove that d = [F (α) : F ] if
and only if f(X) is the minimal polynomial of α over F .

Solution: The “if” direction is the Fundamental Theorem on Degrees of Simple
Extensions (FTDSE). For the “only if” direction, assume d = [F (α) : F ] and
let g(X) ∈ F [X] be the minimal polynomial of α over F . Then g(X) | f(X) in
F [X]. Also, by FTDSE, d = deg g(X). Therefore f(X) = cg(X) for some non-zero
constant c ∈ F . Since both polynomials are monic, c = 1, so f(X) = g(X).

Please turn the page for three more nice problems! And the rules.
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7. Let α =
√

3 +
√

7 ∈ C.

(a) Find the minimal polynomial of α over Q, and prove that it is the minimal
polynomial.

(b) Prove that Q(α) = Q(
√

3,
√

7).

Solution: First we show that
√

7 /∈ Q(
√

3). Suppose, by way of contradiction, that√
7 = a+ b

√
3 with a, b ∈ Q. Squaing both sides, we get

7 = a2 + 2ab
√

3 + 3b2 .

If a = 0 we have 7 = 3b2, which is impossible, since 3X2 − 7 has no rational roots
(by Eisenstein or Impossible Rational Roots). If b = 0 we have a2 = 7, which is also
impossible (since X2 − 7 has no rational roots). Thus both a and b are non-zero.

Now the equation shows, since 2ab 6= 0, that
√

3 is rational, again a contradiction
(since X2 − 3 has no rational roots).

Let K = Q(
√

3,
√

7) and E = Q(
√

3). We know that [E : Q] = 2, and since√
7 /∈ E we have [K : E] > 1. But also [K : E] ≤ 2 since

√
7 is a root of

X2 − 7 ∈ E[X]. Thus [K : E] = 2, and by multiplicativity of degrees we have
[K : Q] = 4.

Now we prove (b): By direct computation we have

α2 = 10 + 2
√

3
√

7 and α3 = 10
√

3 + 10
√

7 + 6
√

7 + 14
√

3 = 16α+ 8
√

3 .

Therefore
√

3 = 1
8α

3 − 2α ∈ Q(α), and
√

7 = α −
√

3 = − 1
8α

3 + 3α ∈ Q(α), and

we have Q(α) ⊆ Q(
√

3,
√

7) ⊆ Q(α). Hence Q(
√

3,
√

7) = Q(α).

For (a), we square both sides of the equation α2 − 10 = 2
√

3
√

7, getting

α4 − 10α2 + 100 = 84, that is α4 − 10α2 + 16 = 0 .

Now f(X) = X4−20X2−16 is a monic polynomial of degree 4 having α as a root.
Since, by (b) and the initial computations, [Q(α) : Q] = 4, Problem #6 implies
that f(X) is the minimal polynomial for α over Q.

8. Let R be an integral domain, and let x, y ∈ R. Prove that Rx = Ry ⇐⇒ x = yu
for some unit u ∈ R.

Solution: Suppose Rx = Ry. Then there are elements r, s ∈ R such that x = ry
and y = sx. If x = 0, then y = 0 too, and we have x = 1y. If x 6= 0 we note that
1x = x = rsx; canceling the non-zero element x, we get 1 = rs. Thus r is a unit,
and we take u = r.

For the converse, assume x = yu where u is a unit. That equation shows that
x ∈ Ry and hence that Rx ⊆ Ry. The equation xu−1 = y shows that y ∈ Rx, so
Ry ⊆ Rx.

9. For the polynomials f(X) = X4 + 3X2 + 1 and g(X) = X3 + 2X + 1, find their
GCD h(X), and find polynomials a(X) and b(X) such that

h(X) = a(x)f(X) + b(X)g(X)

(a) in Q[X], and
(b) in F2[X].

Solution: We refer to the top four equations in the second display of 1.8 in the book.
They describe the first four division steps in the Euclidean algorithm. (Actually
the fourth division step is part of the “. . . ”—the line of dots to indicate that it is
similar to the rest, but is not displayed— in the display.) Here are these equations:
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f = q0g + r0

g = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

I will not show here the actual divisions, but just say what the results are, when
working Q[X]:

q0 = X r0 = X2 −X + 1

q1 = X + 1 r1 = 2X

q2 =
1

2
(X − 1) r2 = 1

q3 = 2X r3 = 0

Recall that the GCD is the last non-zero remainder; so in Q[X] the GCD is r2 = 1.
In F2[X], the first two equations are the same, but now r1 = 0, and the GCD is
r0 = X2 −X + 1.

Using the first display, we can write each remainder as a linear combination of
f and g, as follows:

r0 = f − q0g
r1 = g − q1r0 = g − q1(f − q0g) = −q1f + (1 + q1q0)g

r2 = r0 − q2r1 = (f − q0g)− q2
(
− q1f + (1 + q1q0)g

)
= (1 + q2q1)f + (−q0 − q2 − q2q1q0)g

(a) We already know that the GCD is 1. This is r2, and we get the coefficients
in the expression we want by plugging the values of q0, q1, and q2 into the last
equation:

1 =
(
1 +

1

2
(X2 − 1)

)
f +

(
−X − 1

2
(X − 1)− 1

2
(X − 1)(X − 2)X

)
g ,

or, somewhat more palatably:

1 =
1

2
(X2 + 1)f(X) +

1

2
(−X3 − 2X + 1)g(X) .

Actually, we might as well declare the GCD to be 2 (since in F [X] every non-zero
constant multiple of a GCD is a GCD). Then we can write

2 = (X2 + 1)(X4 + 3X2 + 1) + (−X3 − 2X + 1)(X3 + 2X + 1) .

We actually multiplied this out and found, to our amazement that it worked. Hur-
ray!

(b) This is much easier. Recall that the GCD is r0 = X2 −X + 1. The relevant
equation is just r0 = f − q0g, that is,

X2 −X + 1 = 1(X4 + 3X2 + 1)−X(X3 + 2X + 1)

Of course, since 2 = 0, + and − are the same, and this can be rewritten as
follows:

X2 +X + 1 = 1(X4 +X2 + 1) +X(X3 + 1) .


