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1. Obviously there are no real roots. The four complex roots are points z on the unit
circle for which x4 = i = eπi. They are the points eiθ, with θ = π

4 ,
3π
4 ,

5π
4 ,

7π
4 , or in

“Cartesian coordinates”, the complex numbers α =
√
2
2 (1 + i), β =

√
2
2 (−1 + i), β =

√
2
2 (−1− i), α =

√
2
2 (1− i). This gives the answer to (c):

X4 + 1 = (X − α)(X − α)(X − β)(X − β) .

The factors are irreducible because they have degree one.
For (b), we pair each root with its complex conjugate, getting (X−α)(X−α) =

X2 −
√

2X + 1 and (X − β)(X − β) = X2 +
√

2X + 1. This answers (b):

X4 + 1 = (X2 −
√

2X + 1)(X2 +
√

2X + 1 .

The factors are irreducible in R[X] because each has degree and has no real roots.
For (a), we guess that the polynomial is irreducible over Q and check it by

substituting X + 1 for X: (X + 1)4 + 1 = X4 + 4X3 + 6X2 + 4X + 2, which is
irreducible over Q, by Eisenstein’s Criterion with p = 2, Therefore the original
polynomial X4 + 1 is irreducible over Q.

Finally, (d). By Freshman’s Dream, (X+1)2 = X2 +1, and (X2 +1)2 = X4 +1.
This yields the factorization over F2:

X4 + 1 = (X + 1)4 .

The factors are irreducible because they are linear.

2. This problem was designed to give you a preview of Galois Theory, where you will
learn systematic approaches to solving problems like this. At this point you really
do not have these tools. There are two guiding principles here for an automorphism
ϕ of a field F containing Q:

GP1: ϕ(c) = c for every c ∈ Q. (“Elements of Q are fixed.”)
GP2: If α ∈ F is a root of some polynomial f(X) ∈ Q[X], then ϕ(α) is also a

root of f(X). (“Roots map to roots.”)
Proof of GP1: We know ϕ(1) = 1, so ϕ(2) = ϕ(1+1) = ϕ(1)+ϕ(1) = 2. In this

boring fashion, we easily get ϕ(n) = n for every positive integer n. Also, since ϕ is
a homomorphism of additive groups, we have ϕ(0) = 0, and ϕ(−n) = −ϕ(n) = −n
for every positive integer n. Thus elements of Z are fixed. Finally, given a rational
number q, write q = a

b , where a and b are integers, with b 6= 0. Then

bϕ(q) = ϕ(b)ϕ(q) = ϕ(bq) = ϕ(a) = a ,

so ϕ(q) = a
b = q.

Proof of GP2: Write f(X) = amX
m+am−1X

m−1+ · · ·+a1X+a0, with ai ∈ Q.
Now f(α) = 0, that is,

amα
m + am−1α

m−1 + · · ·+ a1α+ a0 = 0 .

Applying ϕ to both sides, we have (since ϕ preserves addition and multiplication)

ϕ(am)(ϕ(α))m + ϕ(am−1)(ϕ(α))m−1 + · · ·+ ϕ(a1)ϕ(α) + ϕ(a0) = ϕ(0) ,
1
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which, by GP1, simplifies to

am(ϕ(α))m + am−1(ϕ(α))m−1 + · · ·+ a1ϕ(α) + a0 = 0 .

This shows that f(ϕ(α)) = 0, as desired.

(a) Since i is a root of X2 + 1, whose other root is −i, any automorphism ϕ
has to take a+ bi to either a+ bi or a− bi. The first case gives the identity map,
and the second is complex conjugation. It is clear that the map ϕ(a+ bi) = a− bi
preserves addition. Also, ϕ((a + bi)(c + di)) = ϕ((ac − bd) + (ad + bc)i) = (ac −
bd)− (ad+ bc)i = (a− bi)(c−di) = ϕ(a+ bi)ϕ(c+di). This shows that conjugation
is a field homomorphism, and it’s clearly injective and surjective. Summary: The
two automorphisms are the identity and complex conjugation.

(b) Again, there are two automorphisms: The identity and the map taking

a+ b
√

2 to a− b
√

2. Any autormorphism has to take
√

2 to either
√

2 or −
√

2, the
other root of X2 − 2. The proof that the “conjugation” map taking a + b

√
2 to

a− b
√

2 is an automorphism is pretty much the same as for part (a).
(c) The identity map is the only automorphism. To see this, let ϕ be any

automorphism. Then ϕ( 3
√

2) must be a root of X3 − 2. But this polynomial has

only one real root, and hence only one root in Q[ 3
√

2], namely 3
√

2. So we have

ϕ( 3
√

2) = 3
√

2, and hence ϕ( 3
√

4) = ϕ(( 3
√

2)2) = (ϕ( 3
√

2))2 = ( 3
√

2)2 = 3
√

4. Therefore

every element a+ b 3
√

2 + c 3
√

4 is fixed.
(d) As in (c), any automorphism ϕ is determined by the value ϕ( 4

√
2), and this

value must be another root of X4 − 2. The four complex roots of X4 − 2 are ± 4
√

2
and ±i 4

√
2, and ± 4

√
2 are the only real roots, hence the only roots in the field Q[ 4

√
2].

Therefore there are at mos two automorphisms. One can check directly (if one is a
masochist) that the map

a+ b
4
√

2 + c
√

2 + d
√

2
4
√

2 7→ a− b 4
√

2 + c
√

2− d
√

2
4
√

2

is an automorphism. Therefore there are exactly two automorphisms – the one just
described and the identity map.

3. Well, the first two were too hard, but this one is too easy. Start the algorithm
by dividing f(X) by g(X). The remainder is 0 (and the quotient is X − 1). In
other words, the GCD is g(X) itself, and the desired linear combination is:

g(X) = 0 · f(X) + 1 · g(X) .

4. We have to show that f−1(J) and f(I) are closed under (i) addition and (ii)
negation, and that (ii) stable under multiplication by elements of R. First, we
observe that f(0) = 0. To see this, we have

0 + f(0) = f(0) = f(0 + 0) = f(0) + f(0) ,

so, adding, −f(0) to both sides, we get 0 = f(0). Next, we observe that f(−a) =
−f(a) for every a ∈ R. To see this, we have

0 = f(0) = f(a+ (−a)) = f(a) + f(−a) ,

so, adding −f(a) to both sides, we get −f(a) = f(−a). Now onward:
(a) Let a, b ∈ f−1(J), and let r ∈ R. Then f(a) ∈ J and f(b) ∈ J .

(i) f(a+ b) = f(a) + f(b) ∈ J . Therefore a+ b ∈ f−1(J).
(ii) We have f(−a) = −f(a) ∈ J . Thus −a ∈ f−1(J).
(iii) f(ra) = f(r)f(a) ∈ J . Therefore ra ∈ f−1(J).



NEPAL ALGEBRA PROJECT 2018MODULE 1 — HOMEWORK #1: SOLUTIONSFRIDAY, 18th MAY 20183

(b) Let R = Z, S = Q, and F : Z → Q the inclusion homomorphism taking
n ∈ Z to n ∈ Q. Then I = Z is an ideal of Z, but f(I) = Z is not an ideal of Q.
(Take s = 4

23 ∈ S and α = 9 ∈ f(I). Then sα = 36
23 /∈ Z = f(I). Therefore f(I) is

not stable under multiplication by elements of S.)

5. For 0 < ` < p, let b denote the binomial coefficient
(
p
`

)
. We want to show that

p | b. We have b = p!
`!(p−`)! , so b ·`! = p(p−1) . . . (p−`+1). This shows that p | b ·`!.

Now since p - i for 1 ≤ i ≤ `, we must have p | b. (If a prime divides a product, it
must divfide one of the factors.)

Let R be any commutative ring. Given a non-negative integer m, we also let m
denote the element m · 1R of R. For 0 ≤ ` ≤ m, the binomial coefficient b =

(
m
`

)
therefore makes sense in R. (Just compute the integer b and then take the element
b · 1R.) Moreover, the usual proof, by induction, of the Binomial Theorem, namely,
(a+ b)m =

∑m
`=0

(
m
`

)
a`bm−`, works in any commutative ring. In particular, in the

ring Fp[X], we have (f(X)+g(X))p =
∑p
`=0

(
p
`

)
f(X)`g(X)p−`. By the first part of

the problem,
(
p
`

)
= 0 for 0 < ` < p. Therefore only the 0th and pth terms survive,

and we get the Freshman’s Dream.


