
NAP 2018 Module-V: Applications of Galois theory Lecture 6: July 17, 2018 (Tuesday)

We will discuss how to construct n degree cyclic Galois extensions of a field F.

Example 1. (a) Some examples of quadratic extensions over Q you have seen.
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All these extensions are Galois.
(b) Some examples of degree three extensions of Q.
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But all these extensions are NOT Galois extensions! These extensions are not normal. For
example, in Q(2

1
3 ) we have only one root of the polynomial X3 − 2 ∈ Q[X].

(c) Examples of degree four extensions of Q ?
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But all these extensions are NOT Galois extensions! These are not normal extensions.

Question 2. Are these all possible quadratic extension of Q ? (You have seen the answer before.)

For any quadratic extension E/Q there exists d ∈ Z which is not a square in Z and E = Q(
√

d).

Question 3. How to construct degree three, degree four or degree n cyclic Galois extensions over
Q ?

We have realised, for example, that only adding one root of X3 − 2 is not enough. We must add
all the root of this polynomial to get a normal extension, that is 2

1
3 ω and 2

1
3 ω2 where ω is a cube

root of unity. The filed extension will be Q(2
1
3 , ω) over Q. Now the degree of this extension is

six (not three). Imagine if ω was an element in Q, then this extension Q(2
1
3 )/Q would have been

normal and of degree three but unfortunately this is not the case.
Similarly, if we try to add one root of Xn − 2 ∈ Q[X] to construct a n-degree cyclic Galois

extension over Q then it will not work since n-th root of unity are not in Q for n ≥ 3.
Our approach: We want to construct n-degree cyclic Galois extension of a field F and we wanted

to do this by adding a root of a polynomial of type Xn − a for suitable a ∈ F. This approach works
very well if n-th roots of unity are in F (which is not the case if F = Q and n ≥ 3).

Remark 4. In order to make our approach work we assume that our base field F has all distinct
n-th root of unity. This will also require that the characteristic p of the field F does not divide n.
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Theorem 5. Let F be a field which contains a primitive root of unity. Let E = F(α) where αn ∈ F and no
smaller power of α ∈ F. Then E is a Galois extension of F with cyclic Galois group of order n. Conversely,
if E is a cyclic extension of F of degree n, then E = F(α) for some α with αn ∈ F.

It may be the case, F(α) = F(β). For example;

Example 6. (a) Quadratic extension: Fix F = Q. Then Q(
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(b) Degree three extension: Fix F = Q(ω) where ω is a primitive third root of unity. Then
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(c) Degree your extension: Fix F = Q(i) where i is a primitive fourth root of unity. Then
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Theorem 7. Let F be a field containing a primitive n-th root of unity. Two cyclic extensions F(a
1
n ) and

F(b
1
n ) of F of degree n are equal if and only if a = brcn for some r ∈ Z relatively prime to n and some c ∈ F

if and only if a and b generate the same subgroup of F×/F×n.


