Recall that we have proved the following theorem in Lecture 3.

Theorem 1. $\Phi_n(X) \in \mathbb{Z}[X]$ is irreducible.

Corollary 2. Gal $(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ where ζ is a primitive *n*-th root of unity.

Proof. We need to prove that the map θ : Gal($\mathbb{Q}(\zeta)/\mathbb{Q}$) $\rightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$ in the theorem is surjective. **Recall:** Cardinality of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is $\phi(n) = \#\{1 \le a < n : (a, n) = 1\}$ the Euler's phi-function. And $\Phi_n(X) = \prod_{\zeta \text{ primitive } n-\text{th root of unity}}(X - \zeta) = \prod_{i:(i,n)=1}(X - \zeta^i)$, thus degree of $\Phi_n(X)$ is $\phi(n)$. Hence $|\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$. Therefore the map θ is surjective and hence is bijective.

Theorem 3. The regular n-gon is constructible if and only if $n = 2^k p_1 p_2 \cdots p_s$ where p_i 's are distinct *Fermat primes.*

Remark 4. You might have already seen that, for a prime *p*, a regular *p*-gon is constructible if and only if *p* is a Fermat prime. The above theorem characterizes constructible *n*-gon for any positive integer *n* (need not be prime).

Example 5. (1) Regular 17-gon is constructible. (2) Regular 2^k -gon is constructible for every $k \ge 1$.

Recall: (1) A regular *n*-gon is constructible if and only if primitive *n*-th root of unity is constructible.

(2) A number $\alpha \in \mathbb{R}$ is constructible $\Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^s$ for some $s \in \mathbb{N}$.

(3) When is the converse of (2) true ? If $\mathbb{Q}[\alpha] \subseteq E \subseteq \mathbb{R}$ and E/\mathbb{Q} is a Galois extension with $[E : \mathbb{Q}] = 2^s$ for some integer *s*, then α is constructible.

Sketch of proof in the case *p* **prime:** Suppose *p* is prime. We know that $\mathbb{Q}[\zeta]/\mathbb{Q}$ is a Galois extension and $\operatorname{irr}(\zeta, \mathbb{Q}) = X^{p-1} + X^{p-2} + \cdots + 1$. Thus $[\mathbb{Q}[\zeta] : \mathbb{Q}] = p - 1$. Therefore regular *p*-gon is constructible if and only if $[\mathbb{Q}[\zeta] : \mathbb{Q}] = p - 1 = 2^s$ for some *s*.

Fact: $p = 2^{s} + 1$ is a prime number if and only if *p* is a Fermat prime.

Sketch of proof of Theorem 3 Let ζ be a primitive *n*-th root of unity. We have proved that $\mathbb{Q}[\zeta]/\mathbb{Q}$ is Galois. Therefore ζ is constructible iff $\phi(n) = 2^s$ for some *s* and then the theorem follows.

Fact: Let K/\mathbb{Q} be a finite Galois extension with $Gal(K/\mathbb{Q})$ is abelian. Then $K \subset \mathbb{Q}(\zeta)$ for some primitive *n*-th root of unity ζ .

Definition 6. A finite Galois extension E/F is called cyclic if the group Gal(E/F) is a cyclic group.

Example 7. (a) Q(i)/Q is cyclic of degree 2.

- (b) $\mathbb{Q}(\omega)/\mathbb{Q}$ is also cyclic of degree 2 (ω is a cube root of 1).
- (c) $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ is not cyclic since the Galois group is Klein's 4 group which is not a cyclic group.

Theorem 8. Let *F* contain a primitive *n*-th roots of unity, $E = F[\alpha]$ where $\alpha^n \in F$ and let *n* be the smallest non-negative integer such that $\alpha^n \in F$. Then E/F is Galois with Galois group cyclic of order *n*.

2

Proof. Let $\alpha^n = a \in F$. Then α satisfies the equation $X^n - a \in F[X]$. Let ζ be a primitive *n*-th root of unity. Then $\alpha, \zeta \alpha, \zeta^2 \alpha, \dots, \zeta^{n-1} \alpha$ are all the roots of $X^n - a$. Therefore $E = F[\alpha]$ is the splitting field of $X^n - a$ and hence is Galois extension. Let μ_n denote the group of *n*th roots of 1 in *F*. In order to prove the assertion we establish an isomorphism between θ : Gal $(E/F) \longrightarrow \mu_n$. Let $\sigma \in \text{Gal}(E/F)$, then $\sigma : E \to E$ is an automorphism with $\sigma(\alpha) = \zeta^i \alpha$ for some $0 \le i \le n-1$. Define a map θ : Gal $(E/F) \to \mu_n$ as

$$\sigma \mapsto \frac{\sigma(\alpha)}{\alpha} = \zeta^i.$$

Notice that this map remains same when α is replaced by its conjugate (Suppose $\tau(\alpha)$ is a conjugate of α , say $\tau(\alpha) = \zeta^{j} \alpha$ for some $0 \le j \le n-1$. Then $\frac{\sigma(\tau(\alpha))}{\tau(\alpha)} = \frac{\sigma(\zeta^{j}\alpha)}{\zeta^{j}\alpha} = \frac{\zeta^{j}\sigma(\alpha)}{\zeta^{j}\alpha} = \frac{\sigma(\alpha)}{\alpha}$ as $\zeta^{j} \in F$). Moreover, θ is a group homomorphism, i.e.

$$\theta(\sigma\tau) = \frac{\sigma(\tau(\alpha))}{\tau\alpha} = \frac{\sigma(\tau(\alpha))}{\tau(\alpha)} \frac{\tau(\alpha)}{\alpha} = \frac{\sigma(\alpha)}{\alpha} \frac{\tau(\alpha)}{\alpha} = \theta(\sigma)\theta(\tau).$$

The map θ is injective: $\theta(\sigma) = 1 \Rightarrow \frac{\sigma(\alpha)}{\alpha} = 1 \Rightarrow \sigma(\alpha) = \alpha \Rightarrow \sigma = id$ (as α generates *E*). Let $|\operatorname{Gal}(E/F)| = d$. Then d|n. Suppose d < n then $(\theta(\sigma))^d = 1$ for all $\sigma \in \operatorname{Gal}(E/F)$. This implies that $\sigma(\alpha^d) = \sigma(\alpha)^d = \alpha^d$ and hence $\alpha^d \in F$ but this is a contradiction (as d < n). Thus θ is an isomorphism.

Theorem 9. Let *F* be a field containing a primitive *n*-th root of unity. If *E* is a cyclic Galois extension of *F* of order *n* then $E = F[\alpha]$ for some $\alpha \in E$ such that $\alpha^n \in F$.

Proof. Let $G = \text{Gal}(E/F) = \langle \sigma \rangle$. It is enough to show that there exists $\alpha \in E$ such that $\sigma(\alpha) = \zeta^{-1}\alpha$ (then $\alpha^n \in F$ because $\sigma(\alpha^n) = \sigma(\alpha)^n = (\zeta^{-1}\alpha)^n = \alpha^n \Rightarrow \alpha^n \in F$ and *n* is the least such integer. Moreover, $F[\alpha] \subseteq E$ and by Theorem 8 $F[\alpha]/F$ is cyclic of order *n* which gives that $E = F[\alpha]$).

By Dedekind's theorem on the independence of characters $\{id, \sigma, \sigma^2, \dots, \sigma^{n-1}\}$ is linearly independent. Therefore

$$\sum_{i=0}^{n-1} \zeta^i \sigma^i \neq 0$$

Hence there exists $\gamma \in E$ such that

$$\alpha := \sum_{i=0}^{n-1} \zeta^i \sigma^i(\gamma) \neq 0$$

Then

$$\sigma(\alpha) = \sum_{i=0}^{n-1} \zeta^{i} \sigma^{i+1}(\gamma) = \zeta^{-1} \sum_{i=0}^{n-1} \zeta^{i+1} \sigma^{i+1}(\gamma) = \zeta^{-1} \alpha.$$

 \square

Example 10. Consider n = 2. Notice that \mathbb{Q} contains -1 and hence a primitive 2nd root of unity. Therefore for any $a \in \mathbb{Q}$ which is not a square $\mathbb{Q}(\sqrt{a})/\mathbb{Q}$ is cyclic extension of degree 2. Moreover, if K/Q is an extension of degree 2, then $K = \mathbb{Q}(\sqrt{a})$ for some $a \in \mathbb{Q}$.

Question 11. When is $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}(\sqrt{b})$ for $a, b \in \mathbb{Q}$?

Theorem 12. Let *F* contain a primitive *n*-th root of unity. Two cyclic extensions of degree *n*, say $F[\sqrt[n]{a}]$ and $F[\sqrt[n]{b}]$, are equal if and only if $a = b^r c^n$ (if and only if *a* and *b* generate the same subgroup in $F^{\times} / F^{\times n}$).

Proof. If $a = b^r c^n$ where gcd(r, n) = 1, then $F[\sqrt[n]{a}] = F[\sqrt[n]{b}]$. (Since $\sqrt[n]{a} = c\sqrt[n]{b^r}$, $F[\sqrt[n]{a}] \subseteq F[\sqrt[n]{b}]$. On the other hand, write 1 = rx + ny. Then $\sqrt[n]{b} = c(\sqrt[n]{b^{rx+ny}}) = c^{-1}(\sqrt[n]{a})^x b^y$ and hence $F[\sqrt[n]{b}] \subseteq F[\sqrt[n]{a}]$.)

Now, suppose that $F[\sqrt[n]{a}] = F[\sqrt[n]{b}]$. Let $\alpha = \sqrt[n]{a}$, $\beta = \sqrt[n]{b}$, $Gal(F[\beta]/F) = \langle \sigma \rangle$ and $\sigma(\beta) = \zeta\beta$ for some primitive *n*-th root of unity ζ . Then $\sigma(\alpha) = \zeta^{j}\alpha$ for some positive integer with gcd(j, n) = 1. Write

$$\alpha = \sum_{i=0}^{n-1} c_i \beta^i \qquad \text{for some } c_i \in F.$$

Then $\sigma(\alpha) = \sum_{i=0}^{n-1} c_i \zeta^i \beta^i$. On the other hand, $\sigma(\alpha) = \zeta^j \alpha = \sum_{i=0}^{n-1} \zeta^j c_i \beta^i$. On comparing the coefficients we get $c_i = 0$ for all $i \neq j$. Thus $\alpha = c_j \beta^j$ which gives that $a = c_j^n b$ as required.