
NAP 2018 Module-V:Applications of Galois theory Lecture 5: July 16, 2018 (Monday)

Recall that we have proved the following theorem in Lecture 3.

Theorem 1. Φn(X) ∈ Z[X] is irreducible.

Corollary 2. Gal(Q(ζ)/Q) ∼= (Z/nZ)× where ζ is a primitive n-th root of unity.

Proof. We need to prove that the map θ : Gal(Q(ζ)/Q)→ (Z/nZ)× in the theorem is surjective.
Recall: Cardinality of (Z/nZ)× is φ(n) = #{1 ≤ a < n : (a, n) = 1} the Euler’s phi-function.
And Φn(X) = ∏ζ primitive n−th root of unity(X− ζ) = ∏i:(i,n)=1(X− ζ i), thus degree of Φn(X) is φ(n).
Hence |Gal(Q(ζ)/Q)| = [Q(ζ) : Q] = φ(n) = |(Z/nZ)×|. Therefore the map θ is surjective and
hence is bijective. �

Theorem 3. The regular n-gon is constructible if and only if n = 2k p1 p2 · · · ps where pi’s are distinct
Fermat primes.

Remark 4. You might have already seen that, for a prime p, a regular p-gon is constructible if and
only if p is a Fermat prime. The above theorem characterizes constructible n-gon for any positive
integer n (need not be prime).

Example 5. (1) Regular 17-gon is constructible.
(2) Regular 2k-gon is constructible for every k ≥ 1.

Recall: (1) A regular n-gon is constructible if and only if primitive n-th root of unity is con-
structible.
(2) A number α ∈ R is constructible⇒ [Q(α) : Q] = 2s for some s ∈N.
(3) When is the converse of (2) true ? If Q[α] ⊆ E ⊆ R and E/Q is a Galois extension with
[E : Q] = 2s for some integer s, then α is constructible.

Sketch of proof in the case p prime: Suppose p is prime. We know that Q[ζ]/Q is a Galois exten-
sion and irr(ζ, Q) = Xp−1 + Xp−2 + · · ·+ 1. Thus [Q[ζ] : Q] = p− 1. Therefore regular p-gon is
constructible if and only if [Q[ζ] : Q] = p− 1 = 2s for some s.

Fact: p = 2s + 1 is a prime number if and only if p is a Fermat prime.

Sketch of proof of Theorem 3 Let ζ be a primitive n-th root of unity. We have proved that Q[ζ]/Q

is Galois. Therefore ζ is constructible iff φ(n) = 2s for some s and then the theorem follows.

Fact: Let K/Q be a finite Galois extension with Gal(K/Q) is abelian. Then K ⊂ Q(ζ) for some
primitive n-th root of unity ζ.

Definition 6. A finite Galois extension E/F is called cyclic if the group Gal(E/F) is a cyclic group.

Example 7. (a) Q(i)/Q is cyclic of degree 2.
(b) Q(ω)/Q is also cyclic of degree 2 (ω is a cube root of 1).
(c) Q(

√
2,
√

3)/Q is not cyclic since the Galois group is Klein’s 4 group which is not a cyclic
group.

Theorem 8. Let F contain a primitive n-th roots of unity, E = F[α] where αn ∈ F and let n be the smallest
non-negative integer such that αn ∈ F. Then E/F is Galois with Galois group cyclic of order n.
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Proof. Let αn = a ∈ F. Then α satisfies the equation Xn − a ∈ F[X]. Let ζ be a primitive n-th
root of unity. Then α, ζα, ζ2α, · · · , ζn−1α are all the roots of Xn − a. Therefore E = F[α] is the
splitting field of Xn − a and hence is Galois extension. Let µn denote the group of nth roots of 1
in F. In order to prove the assertion we establish an isomorphism between θ : Gal(E/F) −→ µn.
Let σ ∈ Gal(E/F), then σ : E → E is an automorphism with σ(α) = ζ iα for some 0 ≤ i ≤ n− 1.
Define a map θ : Gal(E/F)→ µn as

σ 7→ σ(α)

α
= ζ i.

Notice that this map remains same when α is replaced by its conjugate (Suppose τ(α) is a conjugate
of α, say τ(α) = ζ jα for some 0 ≤ j ≤ n − 1. Then σ(τ(α))

τ(α)
= σ(ζ jα)

ζ jα
= ζ jσ(α)

ζ jα
= σ(α)

α as ζ j ∈ F).
Moreover, θ is a group homomorphism, i.e.

θ(στ) =
σ(τ(α))

τα
=

σ(τ(α))

τ(α)

τ(α)

α
=

σ(α)

α

τ(α)

α
= θ(σ)θ(τ).

The map θ is injective: θ(σ) = 1 ⇒ σ(α)
α = 1 ⇒ σ(α) = α ⇒ σ = id (as α generates E). Let

|Gal(E/F)| = d. Then d|n. Suppose d < n then (θ(σ))d = 1 for all σ ∈ Gal(E/F). This implies
that σ(αd) = σ(α)d = αd and hence αd ∈ F but this is a contradiction (as d < n). Thus θ is an
isomorphism. �

Theorem 9. Let F be a field containing a primitive n-th root of unity. If E is a cyclic Galois extension of F
of order n then E = F[α] for some α ∈ E such that αn ∈ F.

Proof. Let G = Gal(E/F) =< σ >. It is enough to show that there exists α ∈ E such that
σ(α) = ζ−1α (then αn ∈ F because σ(αn) = σ(α)n = (ζ−1α)n = αn ⇒ αn ∈ F and n is the
least such integer. Moreover, F[α] ⊆ E and by Theorem 8 F[α]/F is cyclic of order n which gives
that E = F[α]).
By Dedekind’s theorem on the independence of characters {id, σ, σ2, · · · , σn−1} is linearly inde-
pendent. Therefore

n−1

∑
i=0

ζ iσi 6= 0.

Hence there exists γ ∈ E such that

α :=
n−1

∑
i=0

ζ iσi(γ) 6= 0

Then

σ(α) =
n−1

∑
i=0

ζ iσi+1(γ) = ζ−1
n−1

∑
i=0

ζ i+1σi+1(γ) = ζ−1α.

�

Example 10. Consider n = 2. Notice that Q contains −1 and hence a primitive 2nd root of unity.
Therefore for any a ∈ Q which is not a square Q(

√
a)/Q is cyclic extension of degree 2. Moreover,

if K/Q is an extension of degree 2, then K = Q(
√

a) for some a ∈ Q.

Question 11. When is Q(
√

a) = Q(
√

b) for a, b ∈ Q ?

Theorem 12. Let F contain a primitive n-th root of unity. Two cyclic extensions of degree n, say F[ n
√

a]
and F[ n

√
b], are equal if and only if a = brcn (if and only if a and b generate the same subgroup in F×/F×n).



3

Proof. If a = brcn where gcd(r, n) = 1, then F[ n
√

a] = F[ n
√

b]. (Since n
√

a = c n
√

br, F[ n
√

a] ⊆ F[ n
√

b].
On the other hand, write 1 = rx + ny. Then n

√
b = c( n

√
brx+ny) = c−1( n

√
a)xby and hence F[ n

√
b] ⊆

F[ n
√

a].)
Now, suppose that F[ n

√
a] = F[ n

√
b]. Let α = n

√
a, β = n

√
b, Gal(F[β]/F) =< σ > and σ(β) = ζβ

for some primitive n-th root of unity ζ. Then σ(α) = ζ jα for some positive integer with gcd(j, n) =
1. Write

α =
n−1

∑
i=0

ciβ
i for some ci ∈ F.

Then σ(α) = ∑n−1
i=0 ciζ

iβi. On the other hand, σ(α) = ζ jα = ∑n−1
i=0 ζ jciβ

i. On comparing the coeffi-
cients we get ci = 0 for all i 6= j. Thus α = cjβ

j which gives that a = cn
j b as required. �


