NAP 2018  Module-V:Applications of Galois theory =~ Lecture 5: July 16, 2018 (Monday)

Recall that we have proved the following theorem in Lecture 3.
Theorem 1. ®,(X) € Z[X] is irreducible.
Corollary 2. Gal(Q({)/Q) = (Z/nZ)* where { is a primitive n-th root of unity.
Proof. We need to prove that the map 6 : Gal(Q({)/Q) — (Z/nZ)* in the theorem is surjective.
Recall: Cardinality of (Z/nZ)* is ¢(n) = #{1 < a < n: (a,n) = 1} the Euler’s phi-function.
And @, (X) = T Iz primitive n—th root of unity(X —0) = [Liin)=1 (X — '), thus degree of @, (X) is ¢(n).

Hence | Gal(Q(2)/Q)| = [Q(Q) : Q] = ¢(n) = |(Z/nZ)*|. Therefore the map 0 is surjective and
hence is bijective. O

Theorem 3. The reqular n-gon is constructible if and only if n = 2¥pyps - - - ps where p;’s are distinct
Fermat primes.

Remark 4. You might have already seen that, for a prime p, a regular p-gon is constructible if and
only if p is a Fermat prime. The above theorem characterizes constructible n-gon for any positive
integer n (need not be prime).

Example 5. (1) Regular 17-gon is constructible.
(2) Regular 2*-gon is constructible for every k > 1.

Recall: (1) A regular n-gon is constructible if and only if primitive n-th root of unity is con-
structible.

(2) A number a € R is constructible = [Q(«) : Q] = 2° for some s € IN.

(3) When is the converse of (2) true ? If Qo] € E C R and E/Q is a Galois extension with
[E : Q] = 2° for some integer s, then « is constructible.

Sketch of proof in the case p prime: Suppose p is prime. We know that Q[{]/Q is a Galois exten-
sion and irr({,Q) = XP~! + XP~2 4+ ... + 1. Thus [Q[¢] : Q] = p — 1. Therefore regular p-gon is
constructible if and only if [Q[{] : Q] = p — 1 = 2° for some s.

Fact: p = 2° + 1 is a prime number if and only if p is a Fermat prime.

Sketch of proof of Theorem 3 Let { be a primitive n-th root of unity. We have proved that Q[{]/Q
is Galois. Therefore { is constructible iff ¢ (1) = 2° for some s and then the theorem follows.

Fact: Let K/Q be a finite Galois extension with Gal(K/Q) is abelian. Then K C Q({) for some
primitive n-th root of unity (.

Definition 6. A finite Galois extension E/F is called cyclic if the group Gal(E/F) is a cyclic group.

Example 7.  (a) Q(i)/Q is cyclic of degree 2.
(b) Q(w)/Q is also cyclic of degree 2 (w is a cube root of 1).
(¢) Q(+v/2,4/3)/Q is not cyclic since the Galois group is Klein’s 4 group which is not a cyclic
group.
Theorem 8. Let F contain a primitive n-th roots of unity, E = F|a] where «" € F and let n be the smallest

non-negative integer such that ™ € F. Then E/F is Galois with Galois group cyclic of order n.
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Proof. Let a" = a € F. Then « satisfies the equation X" —a € F[X]. Let { be a primitive n-th
root of unity. Then &, (x, C%a,---, 7" la are all the roots of X" — a. Therefore E = F [a] is the
splitting field of X" — a and hence is Galois extension. Let y,, denote the group of nth roots of 1
in F. In order to prove the assertion we establish an isomorphism between 0 : Gal(E/F) — uy,.
Let o € Gal(E/F), then ¢ : E — E is an automorphism with o(a) = {'a for some 0 < i < n — 1.
Define a map 6 : Gal(E/F) — u, as

o(a)

=
Notice that this map remains same when « is replaced by its conjugate (Suppose 7(«) is a conjugate
of &, say T(a) = {/a for some 0 < j < n — 1. Then olr(w) _ o@) _ Jole) _ @ as {/ € F).

() Ja Ja

Moreover, 0 is a group homomorphism, i.e.

0(oT) = U(:—iuc)) _ U(TT(SX)» TEXD() _ ngzx) TEsz) — 0(0)6(7).

The map 0 is injective: 6(c) = 1 = W -1 = o) =a=0=id(asa generates E). Let

|Gal(E/F)| = d. Then d|n. Suppose d < n then (8(c))¢ = 1 for all ¢ € Gal(E/F). This implies
that c(a?) = o(a)? = a and hence a? € F but this is a contradiction (as d < 1). Thus 6 is an
isomorphism. O

Theorem 9. Let F be a field containing a primitive n-th root of unity. If E is a cyclic Galois extension of F
of order n then E = F[a| for some a € E such that " € F.

Proof. Let G = Gal(E/F) =< o >. It is enough to show that there exists « € E such that
o(a) = {'a (then a" € F because c(a") = o(a)" = (" 'a)" = a" = a" € F and n is the
least such integer. Moreover, F[a] C E and by Theorem 8 F[«]/F is cyclic of order n which gives
that E = Fla]).

By Dedekind’s theorem on the independence of characters {id, o, o
pendent. Therefore

2,... 0" 1} is linearly inde-

n—-1
Y g0t £0.
i=0
Hence there exists y € E such that
n—-1
a:=) g (y) #0
i=0
Then
n—-1 n—-1 )
O’(IX) — Z gl(TH—l(’)’) — g—l Z €’1+10_1+1(,)/) — g_llx.
i=0 i=0
O

Example 10. Consider n = 2. Notice that Q contains —1 and hence a primitive 2nd root of unity.
Therefore for any a € Q which is not a square Q(1/a) /Q is cyclic extension of degree 2. Moreover,
if K/Q is an extension of degree 2, then K = Q(+/a) for some a € Q.

Question 11. When is Q(/a) = Q(V/b) fora,b € Q ?

Theorem 12. Let F contain a primitive n-th root of unity. Two cyclic extensions of degree n,say F[{/a]
and E[/b], are equal if and only ifa = b'c" (if and only if a and b generate the same subgroup in F* /E*").
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Proof. If a = b'c" where ged(r,n) = 1, then F[{/a] = F[V/b]. (Since /a = c/b", F[{/a] C F[V/b].
On the other hand, write 1 = rx + ny. Then v/b = c(¥/b* ) = ¢~1({/a)*b¥ and hence F[+/b] C
FlY/a))

Now, suppose that F[{/a] = F[v/b]. Leta = {/a, B = V/b, Gal(F[]/F) =< ¢ > and c(B) = {B
for some primitive n-th root of unity {. Then () = {/a for some positive integer with ged(j, ) =
1. Write

n—1 )
x = Z cip' for some ¢; € F.
i=0
Then o(a) = Y/~ ¢;{'B". On the other hand, () = {fa = Y1~ {/c;f. On comparing the coeffi-
cients we get ¢; = 0 for all i # j. Thus a = ¢; B/ which gives that a = ¢j’b as required. O



