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Definition 1. A primitive n-th root of unity is an element of order n in the group F×.

Question 2. When does such an element exists ?

Proposition 3. Let F be a field. Assume that either the characteristic of F is 0 or the characteristic of F is
p (a prime number) which does not divide n. Let E be the splitting field of the polynomial Xn − 1. Then

(a) There exists a primitive n-th root of unity in E.
(b) Let ζ be a primitive n-th root of unity. Then E = F[ζ].
(c) There exists an injective group homomorphism, say, θ : Gal(E/F) ↪→ (Z/nZ)×

Recall that (Z/nZ)× is the set of invertible elements (under multiplication) in Z/nZ, i, e.

(Z/nZ)× = {ā ∈ Z/nZ : there exists b̄ ∈ Z/nZ such that ā · b̄ = 1}
which is a group under multiplication. In fact, (Z/nZ)× = {ā ∈ Z/nZ : (a, n) = 1}.
Proof. (a) The polynomial Xn− 1 has distinct root. (Recall that a polynomial f (X) has repeated

roots if and only if f (X) and f ′(X) have a common root). Further note that G := {a ∈ E :
an = 1} ⊂ E× is a finite subgroup of the multiplicative group E×. Recall from (Module 1)
that a finite subgroup of E× is cyclic. Therefore G is cyclic.

(b) The roots of Xn − 1 are ζ, ζ2, · · · , ζn−1, 1. Therefore E = F[ζ].
(c) Let σ ∈ Gal(E/F). Then σ : E→ E is an automorphism. Since σ maps ζ to a root of Xn − 1,

σ(ζ) = ζ i for some i. Since σ is an automorphism, E = F[ζ i] which implies that (i, n) = 1.
Thus ī ∈ (Z/nZ)×. This defines a map, say, θ : Gal(E/F) → (Z/nZ)× where σ 7→ ī as
above. Check that θ is a group homomorphism, i.e. θ(σ1σ2) = θ(σ1)θ(σ2).
Claim: The homomorphism θ is injective. We have to prove, if θ(σ) = 1 for some σ ∈
Gal(E/F) then σ = id. For this, just notice that if θ(σ) = 1 then σ(ζ) = ζ. Since E = F[ζ],
σ = id.

�

Remark 4. The map θ in the above proposition need not be surjective.

Example 5. (1) For example, if F = C then for any n we have E = C. Therefore Gal(E/F) = {1}.
For n > 2 the order of the group (Z/nZ)× is > 1. Then θ can not be surjective.
(2) Take F = R. If n = 2 then E = R. Both the groups Gal(E/F) and (Z/2Z)× are trivial. Then θ
is onto (obvious !).
(3) Take F = R. If n = 3 then E = C and Gal(E/F) = {1,−1} a group of order two. Moreover
(Z/3Z)× is also a group of order two. In this case, θ is surjective.
(4) Let F = R and n > 3. Then E = C and Gal(E/F) = {1,−1}. Therefore the map θ need not be
surjective.

We prove that if F = Q, then θ is surjective and hence is an isomorphism.

Remark 6. Consider Xn − 1 ∈ Q[X]. This polynomial has some obvious factors. For example, if
d|n then Xd − 1 divides Xn − 1. In fact, if n = qd for some q ∈N, then

Xn − 1 = (Xd − 1)(Xn−d + Xn−2d + · · ·+ Xn−(q−1)d + 1).

Definition 7 (Cyclotomic polynomial). For a positive integer n we define the n-th cyclotomic poly-
nomial Φn(X) := ∏(X− ζ) where the product ranges over primitive n-th roots of unity.
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Property 1: Xn − 1 = ∏d|n Φd(X).

Proof. First note that if a is a root of Xn − 1 in E = F[ζ], then order of a (in {α : αn = 1} ⊆ E×)
divides n. Thus every root of Xn − 1 is a root of exactly one Φd(X) for some d|n. �

Property 2: Φn(X) ∈ Z[X].

Proof. First we observe that Φn(X) ∈ Q[X]. By Property 1, we have

Φn(X) =
Xn − 1

∏d|n,d 6=n Φd(X)
.

Therefore by induction on n, Φn(X) ∈ Q[X]. Write Xn − 1 = Φn(X)h(X) for some h(X) ∈ Q[X].
Since Xn − 1 ∈ Z[X], Φn(X) ∈ Z[X]. (Recall that every monic factor in Q[X] of a polynomial in
Z[X] lies in Z[X].) �

Property 3: The degree of Φn(X) is φ(n) where φ denotes the Euler’s phi function. (Recall that
φ(1) = 1, φ(2) = 1, φ(p) = p− 1 for a prime number p.)

Proof. Since Φn(X) is product of (X − ζ I) for all I ≤ i ≤ n and gcd(i, n) = 1. Then the number of
linear factors is the degree of Φn(X) which is by definition φ(n). �

Example 8. (a) Φ1(X) = X− 1.
(b) Φ2(X) = X + 1.
(c) Φ3(X) = (X−ω)(X−ω2) where ω is the cube root of unity. On the other hand, X3 − 1 =

Φ1(X)Φ3(X) = (X− 1)Φ3(X). Thus Φ3(X) = X2 + X + 1.
(d) Φ4(X) = (X− i)(X + i) = X2 + 1.
(e) Φ6(X) = (X− ζ)(X− ζ5) = X2 − X + 1.

These examples suggest that one can compute cyclotomic polynomial recursively (One can
write a program in computer or type polycyclo(n,X) in PARI!)

If n = p is a prime. Only factors of p are 1 and p. Then

Φp(X) =
Xn − 1
Φ1(X)

=
Xp − 1
X− 1

= Xp−1 + Xp−2 + · · ·+ X + 1.

Recall that Φp(x) is an irreducible polynomial (use Eisenstein criterion). In the following theorem
we prove that Φn(X) in irreducible for every n ∈N.

Theorem 9. The cyclotomic polynomial Φn(X) ∈ Z[X] is irreducible in Q[X].

Proof. Let ζ be a primitive n-th root of unity and f (X) be the minimal polynomial for ζ over Q.
We show that Φn(X) = f (X) and hence Φn(X) is irreducible. First we prove if p does not divide
n, then f (ζ p) = 0. Since Φn(ζ) = 0, f (X) divides Φn(X) in Q[X]. Write Φn(X) = f (X)g(X)
for some g(X) ∈ Q[X]. Since f (X) and Φn(X) both are monic polynomials and Φn(X) ∈ Z[X],
f (X), g(X) ∈ Z[X]. Suppose f (ζ p) 6= 0. Since Φn(ζ p) = 0, g(ζ p) = 0. In other words, g(Xp) and
f (X) have a common factor, namely X − ζ in (F[ζ])[X]. Let h(X) = gcd(g(Xp), f (X)) in Q[X].
Since the gcd of g(Xp) and f (X) is same in Q[X] and in (Q[ζ])[X], degree of h(X) is≥ 1. Morover,
h(X) ∈ Z[X].

Therefore f̄ (X) and ḡ(Xp) have a common factor of degree ≥ 1 in Z/pZ where ¯ denotes the
image of a polynomial in the quotient ring Z/pZ. Since ḡ(Xp) = (ḡ(X))p, f̄ (X) and ḡ(X) have a
common factor of degree ≥ 1. Since Φn(X) divides Xn − 1 in (Z/pZ)[X], this implies that Xn − 1
has a repeated root in Z/pZ, a contradiction. Thus f (ζ p) = 0.
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Let i ∈ N with with gcd(i, n) = 1. Write i = pn1
1 . . . pnk

k . Then clearly, pi do not divide n for
all i. By above argument, f (ζ p1) = 0. Since ζ p1 is a primitive n-th root of unity, using the above
argument again we get f (ζ p2

1) = 0. By repeating this argument we get that f (ζ i) = 0. Hence
f (X) = Φn(X).
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