NAP 2018  Module-V:Applications of Galois theory =~ Lecture 3: July 11, 2018 (Wednesday)

Definition 1. A primitive n-th root of unity is an element of order n in the group F*.
Question 2. When does such an element exists ?

Proposition 3. Let F be a field. Assume that either the characteristic of F is 0 or the characteristic of F is
p (a prime number) which does not divide n. Let E be the splitting field of the polynomial X" — 1. Then
(a) There exists a primitive n-th root of unity in E.
(b) Let { be a primitive n-th root of unity. Then E = F[{].
(c) There exists an injective group homomorphism, say, 6 : Gal(E/F) — (Z/nZ)*

Recall that (Z/nZ)* is the set of invertible elements (under multiplication) in Z/nZ, i, e.
(Z/nZ)* ={a € Z/nZ : thereexists b € Z/nZ such thata-b =1}
which is a group under multiplication. In fact, (Z/nZ)* = {a € Z/nZ : (a,n) = 1}.

Proof. (a) The polynomial X" — 1 has distinct root. (Recall that a polynomial f(X) has repeated
roots if and only if f(X) and f/(X) have a common root). Further note that G := {a € E :
a" =1} C E* is a finite subgroup of the multiplicative group E*. Recall from (Module 1)
that a finite subgroup of E* is cyclic. Therefore G is cyclic.

(b) The roots of X" —1are,¢%,---,{"!,1. Therefore E = F[C].

(c) Leto € Gal(E/F). Theno : E — E is an automorphism. Since o maps { to a root of X" — 1,
o({) = ' for some i. Since ¢ is an automorphism, E = F[’] which implies that (i,n) = 1.
Thus i € (Z/nZ)*. This defines a map, say, 0 : Gal(E/F) — (Z/nZ)* where 0 — 1 as
above. Check that 6 is a group homomorphism, i.e. 8(c102) = 0(07)0(02).

Claim: The homomorphism 6 is injective. We have to prove, if §(c) = 1 for some ¢ €
Gal(E/F) then ¢ = id. For this, just notice that if 6(¢) = 1 then ¢({) = {. Since E = F[],
c=id.

O

Remark 4. The map 6 in the above proposition need not be surjective.

Example 5. (1) For example, if F = C then for any n we have E = C. Therefore Gal(E/F) = {1}.
For n > 2 the order of the group (Z/nZ)* is > 1. Then 6 can not be surjective.

(2) Take F = R. If n = 2 then E = R. Both the groups Gal(E/F) and (Z/2Z)* are trivial. Then 6
is onto (obvious !).

(3) Take F = R. If n = 3 then E = C and Gal(E/F) = {1, —1} a group of order two. Moreover
(Z/3Z)* is also a group of order two. In this case, 6 is surjective.

(4) Let F = Rand n > 3. Then E = C and Gal(E/F) = {1, —1}. Therefore the map 6 need not be
surjective.

We prove that if F = Q, then 6 is surjective and hence is an isomorphism.

Remark 6. Consider X" —1 € Q[X]. This polynomial has some obvious factors. For example, if
d|n then X¢ — 1 divides X" — 1. In fact, if n = gd for some g € IN, then

X" 1= (Xd o 1)(Xn—d 4 Xn—Zd et Xn—(q—l)d 4 1)

Definition 7 (Cyclotomic polynomial). For a positive integer n we define the n-th cyclotomic poly-
nomial ®,(X) := [1(X — ) where the product ranges over primitive n-th roots of unity.
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Property 1: X" — 1 = [y, Pa(X).

Proof. First note that if a is a root of X" — 1 in E = F|[(], then order of 4 (in {a : " = 1} C E*)
divides n. Thus every root of X" — 1 is a root of exactly one ®;(X) for some d|n. O
Property 2: ®,(X) € Z[X].
Proof. First we observe that ®,(X) € Q[X]. By Property 1, we have

X"—1
[ drn Pa(X)

Therefore by induction on n, ®,(X) € Q[X]. Write X" — 1 = ®,(X)h(X) for some h(X) € Q[X].
Since X" — 1 € Z[X], ®,(X) € Z[X]. (Recall that every monic factor in Q[X] of a polynomial in
Z[X] liesin Z[X].) O

Property 3: The degree of @, (X) is ¢(n) where ¢ denotes the Euler’s phi function. (Recall that
$(1) =1,¢(2) =1,¢(p) = p — 1 for a prime number p.)

Proof. Since @, (X) is product of (X — ¢!) forall I <i < nand ged(i,n) = 1. Then the number of

®,(X) =

linear factors is the degree of @, (X) which is by definition ¢(n). O
Example8. (a) ®1(X)=X—-1.
(b) ®2(X) = X + 1.
(c) <I>3(X) (X — w)(X — w?) where w is the cube root of unity. On the other hand, X®> — 1 =
@1 (X)®P3(X) = (X — 1)@3(X). Thus ®3(X) = X2+ X + 1.
d) <I>4( )= (X )(X—i-z) X2+ 1.

(@) @6(X) = (X—)(X %) = X~ X+ 1.

These examples suggest that one can compute cyclotomic polynomial recursively (One can
write a program in computer or type polycyclo(n,X) in PARI!)

If n = p is a prime. Only factors of p are 1 and p. Then
X"—-1 XP-1
d(X) X-1
Recall that @, (x) is an irreducible polynomial (use Eisenstein criterion). In the following theorem
we prove that @, (X) in irreducible for every n € IN.

=XV 4 XP 24+ X+ 1

Dp(X) =

Theorem 9. The cyclotomic polynomial ®,(X) € Z[X] is irreducible in Q[X].

Proof. Let { be a primitive n-th root of unity and f(X) be the minimal polynomial for { over Q.
We show that ®,(X) = f(X) and hence ®,(X) is irreducible. First we prove if p does not divide
n, then f(Z?) = 0. Since ®,(7) = 0, f(X) divides ®,(X) in Q[X]. Write ®,(X) = f(X)g(X)
for some ¢(X) € Q[X]. Since f(X) and ®,(X) both are monic polynomials and ®,(X) € Z[X],
f(X),g(X) € Z[X]. Suppose f({?) # 0. Since ®,({?) = 0, g({P) = 0. In other words, ¢(X?) and
f(X) have a common factor, namely X — ¢ in (F[¢])[X]. Let h(X) = gcd(g(X*), f(X)) in Q[X].
Since the ged of ¢(X?) and f(X) is same in Q[X] and in (Q[{])[X], degree of h(X) is > 1. Morover,
h(X) € Z[X].

Therefore f(X) and g(X*) have a common factor of degree > 1 in Z/pZ where~denotes the
image of a polynomial in the quotient ring Z/pZ. Since (X?) = (§(X))?, f(X) and §(X) have a
common factor of degree > 1. Since ®,(X) divides X" — 1in (Z/pZ)[X], this implies that X" — 1
has a repeated root in Z/ pZ, a contradiction. Thus f({?) = 0.
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Let i € N with with ged(i,n) = 1. Write i = p{"'...p.*. Then clearly, p; do not divide n for
all i. By above argument, f({?') = 0. Since {"! is a primitive n-th root of unity, using the above
argument again we get f({”1) = 0. By repeating this argument we get that f(Z') = 0. Hence
f(X) = @u(X). -



