NAProject 2018 Module IV: Computing Galois Groups Lectures 6, 7, 8: Tuesday July 3, 2018

Examples: A generator of \mathbb{F}_7^{\times} is 3. If $K = \mathbb{F}_3(X)/(X^2 + 1) = \mathbb{F}_3[\alpha]$, a generator of K^{\times} will be, for example, $g = 1 + \alpha$.

Theorem. Fix a prime p.

(a) For every power $q = p^n$, there is a field \mathbb{F}_q with q elements.

(b) Every field with $q = p^n$ elements is the splitting field of $X^q - X$ over \mathbb{F}_p . Therefore, all finite fields with q elements are isomorphic. Notation: \mathbb{F}_q .

- (c) Let $f(x) \in \mathbb{F}_p[X]$ be an irreducible polynomial of degree n. Let α be a zero of f. Then,
 - (i) $\alpha^{p^n} = \alpha;$
- (ii) n is the smallest possible integer for which (a) holds;

(iii)
$$f(X) = (X - \alpha)(X - \alpha^p) \cdots (X - \alpha^{p^{n-1}})$$

- (d) If K is a subfield of \mathbb{F}_{p^n} , then the cardinality of K is p^d for some divisor d of n.
- (e) For every divisor d of n there is a unique subfield of \mathbb{F}_{p^n} of cardinality p^d .

Example. Both polynomials $X^2 + 1$ and $X^2 + 2X + 2$ are irreducible in $\mathbb{F}_3[X]$. Thus, they provide us with two ways of obtaining fields of cardinality 9, both isomorphic to \mathbb{F}_9 and to each other:

$$\mathbb{F}_3(X)/(X^2+1) = \mathbb{F}_3[\alpha] = \{0, 1, 2, \alpha, 1+\alpha, 2+\alpha, 2\alpha, 1+2\alpha, 2+2\alpha | \alpha^2+1 = 0 \Leftrightarrow \alpha^2 = 2\}$$

$$\mathbb{F}_{3}(X)/(X^{2}+2X+2) = \mathbb{F}_{3}[\beta] = \{0, 1, 2, \beta, 1+\beta, 2+\beta, 2\beta, 1+2\beta, 2+2\beta|\beta^{2}+2\beta+2 = 0 \Leftrightarrow \beta^{2} = \beta+1\}$$

Let us construct an explicit isomorphism φ better $\mathbb{F}_3[\alpha]$ and $\mathbb{F}_3[\beta]$. Since $\alpha^2 = 2$, necessarily $\varphi(\alpha)^2 = 2 \in \mathbb{F}_3[\beta]$. Thus, candidates for $\varphi(\alpha)$ are elements $a + b\beta \in \mathbb{F}_5[\beta]$ with $(a + b\beta)^2 = 2$. We look for them.

$$(a+b\beta)^2 = 2 \Leftrightarrow a^2 + 2ab\beta + b^2\beta^2 = 2 \Leftrightarrow a^2 + 2ab\beta + b^2\beta + b^2 = 2$$
$$\Leftrightarrow \begin{cases} a^2 + b^2 = 2\\ b(2a+b) = 0 \end{cases} \Leftrightarrow \begin{cases} b = a, a^2 + b^2 = 2 \Rightarrow a = \pm 1, b = a\\ b = 0, a^2 = 2, \text{impossible} \end{cases}$$

We thus have two options for isomorphisms φ between $\mathbb{F}_3[\alpha]$ and $\mathbb{F}_3[\beta]$:

$$\alpha \mapsto 1 + \beta$$
, or $\alpha \mapsto -1 - \beta$.

Also, the generator $g = 1 + \alpha$ of $\mathbb{F}_3[\alpha]^{\times}$ maps, respectively, to to $2 + \beta$ and $-\beta$, both generators of $\mathbb{F}_3[\beta]^{\times}$.