NAProject 2018 Module IV: Computing Galois Groups Lecture 5: Monday 2, 2018

Computing Galois Groups of irreducible quartic polynomials

Let $\operatorname{char} K \neq 2$ and $f(X) \in K[X]$ be an irreducible, separable polynomial of degree 4, with $Z_f = \{\alpha_1, \ldots, \alpha_4\}$. By proposition 2 we know that its Galois group G_f is a transitive subgroup of S_4 divisible by 4, thus G_f could be S_4 of order 24, A_4 of order 12, $V \subset A_4$ of order 4, D_4 of order 8 (three of them in S_4) or C_4 of order 4 (three of them in S_4). We introduce a polynomial of degree 3 with all of its roots in K_f known as the resolvent $R_f(X)$ of f, which will help us determine if 3 divides the order of G_f .

The resolvent of f(X).

We consider the elements of K_f , $\alpha = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$, $\beta = \alpha_1 \alpha_3 + \alpha_2 \alpha_4$, $\gamma = \alpha_1 \alpha_4 + \alpha_2 \alpha_3$, and the cubic polynomial

$$R_f(X) = (X - \alpha)(X - \beta)(X - \gamma) \in K_f[X],$$

with $M = K[\alpha, \beta, \gamma] \subset K_f$, which satisfies $M = K_f^V$, and $\text{Disc}(f) = \text{Disc}(R_f)$, since

$$\alpha - \beta = (\alpha_1 - \alpha_4)(\alpha_2 - \alpha_3), \ \alpha - \gamma = (\alpha_1 - \alpha_4)(\alpha_2 - \alpha_3), \ \beta - \gamma = (\alpha_2 - \alpha_1)(\alpha_4 - \alpha_3).$$

To find the exact value of the resolvent $R_f[X]$ of f, we expand the product in the left of

$$f(X) = (X - \alpha_1)(X - \alpha_2)(X - \alpha_3)(X - \alpha_4) = X^4 + aX^3 + bX^2 + cX + d,$$

and we write the α_i 's in terms of a, b, c and d, getting

$$R_f(X) = X^2 - bX^2 + (ac - 4d)X - (a^2d + c^2 - 4bd).$$

- (a) $R_f(X)$ irreducible in K[X] if and only if 3 divides $|G_f|$.
- (b) If $R_f(X)$ is irreducible, then [M:K] = 3 and 3 divides $[K_f:K] = |G_f|$. In this case, G_f is completely determined by Disc(f): $\text{Disc}(f) = \Box \Rightarrow G_f = A_4$; $\text{Disc}(f) \neq \Box \Rightarrow G_f = S_4$
- (c) If $R_f(X)$ is reducible in K[X], then there is no element of order 3 in G_f , so G_f is either V, D_4 or C_4 .
- (d) If all roots of $R_f(X)$ are in K, then M = K and $G_f = V$. If only one root of R_f is in K, then $M = K[\sqrt{D}]$ and G_f is completely determined by whether f(X) remains irreducible in M[X].

Galois groups of irreducible, separable quartic polynomials if $charK \neq 2$

$R_f(X)$ in $K[X]$	D in K	M	f in M	G_f
irreducible	$\neq \Box$			S_4
irreducible	=			A_4
reducible	$(=\Box)$	K		V
reducible	$(\neq \Box)$	$K[\sqrt{D}]$	irreducible	D_4
reducible	$(\neq \Box)$	$K[\sqrt{D}]$	reducible	C_4

Examples in $\mathbb{Q}[X]$.

$$\begin{array}{ccccccc} f(X) & R_f(X) & D & M & f \text{ in } \mathbb{Q}[\sqrt{D}] & G_f \\ X^4 - X - 1 & X^3 - 4x - 1 & -283 & & S_4 \\ X^4 - 8X + 12 & X^3 - 48X - 64 & 576^2 & & A_4 \\ X^4 + 36X + 63 & (X - 18)(X + 6)(X + 12) & 4320^2 & \mathbb{Q} & & V \\ X^4 + 5X^2 + 5 & (X - 5)(X^2 - 20) & & \mathbb{Q}(\sqrt{5}) & \left(X^2 + \frac{5 + \sqrt{5}}{2}\right) \left(X^2 - \frac{5 + \sqrt{5}}{2}\right) & C_4 \end{array}$$

Construction of finite fields:

We review the following facts from Module 2 (Lecture 5) and Module 3 (Lectures 1, 2)

- (i) If K is a field, the characteristic of K, denoted by charK is the smallest n such that $1 + \stackrel{n)}{\cdots} 1 = 0$. If char $K \neq 0$, then charK is a prime number p.
- (ii) Examples of fields with characteristic 0 are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. Examples of fields with characteristic a prime p are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $\mathbb{F}_{p^r} = \mathbb{F}_[X]/(f)$, where f(X) is a polynomial of degree r which is irreducible modulo p

Proposition 1

- (a) The cardinality of a field K of characteristic p is $q = p^n$, some $n \ge 1$. Also, K contains $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (b) The additive group (K, +) of a finite field K is isomorphic to $(\mathbb{Z}/p\mathbb{Z}, \stackrel{n}{\ldots}, \mathbb{Z}/p\mathbb{Z})$
- (c) The multiplicative group (K^{\times}, \cdot) of a finite field K is cyclic
- (d) There exists $\alpha \in K$ with $K = \mathbb{F}_p[\alpha]$.
- (e) A finite field K is of the form $K = \mathbb{F}_p[X]/(f)$ where f(X) is an irreducible polynomial (modulo p) of degree n.