NAProject 2018 Module IV: Computing Galois Groups Lecture 4: Thursday, June 26, 2018

Elements in S_3 and parity:

Number of elements permuted parity
$$0$$
 Id. even 2 $(12), (13), (23)$ odd 3 $(123), (132)$ even

Thus, $A_3 = \{\text{Id.}, (123), (132) = (123)^2\}$, of size 3, prime, so it has no proper subgrups. Transitive subgroups of S_3 and size:

 $\begin{array}{ccc} 6 & S_3 \\ 3 & A_3 \end{array}$

Elements in S_4 and parity:

Thus, $A_4 = \langle (123), (124), (134), (234), (13)(24), (12)(34) \rangle$ of size 12. Subgroups of A_4 and size:

Order of the subgroup

1 Id.
4
$$\{ \text{Id.}, (13)(24), (12)(34), (14)(32) \} = \langle (13)(24), (12)(34) \rangle = V$$
3 $\{ \text{Id.}, (123), (132) \} = \langle (123) \rangle \sim C_3$
 $\{ \text{Id.}, (124), (142) \} = \langle (124) \rangle \sim C_3$
 $\{ \text{Id.}, (134), (143) \} = \langle (134) \rangle \sim C_3$
 $\{ \text{Id.}, (234), (243) \} = \langle (234) \rangle \sim C_3$

Transitive subgroups of S_4 and size divisible by 4:

4
$$\langle (1234) \rangle \sim C_4$$

 $\langle (1243) \rangle \sim C_4$
 $\langle (1324) \rangle \sim C_4$
 $\langle (13)(24), (12)(34) \rangle = V$
8 $\langle (1234), (13) \rangle \sim D_4$
 $\langle (1243), (12) \rangle \sim D_4$
 $\langle (1243), (14) \rangle \sim D_4$

Proposition 3: Let char $K \neq 2$ and $f(X) \in K[X]$ be a separable polynomial of degree n. Let $\sigma \in G_f$. Then $G_f \subset A_n \Leftrightarrow \Delta(f) \in K \Leftrightarrow \mathrm{Disc}(f)$ is a square in K.

Galois groups of irreducible separable polynomials of degree 3:

degree of
$$f(X)$$
 Disc (f) in K G_f
 3 \square A_3
 3 $\neq \square$ S_3

Examples:

$$h(X) = X^3 - 3X + 1$$
, $\operatorname{Disc}(h) = -4(-3)^2 - 27 = 81 = 9^2 \in \mathbb{Q}^2 \Rightarrow G_h = A_3$
 $g(X) = X^3 + 3X + 1$, $\operatorname{Disc}(g) = -135 \notin \mathbb{Q}^2 \Rightarrow G_h = S_3$