NAProject 2018

Module IV

Let K be a field, $\operatorname{char} K \neq 2$, and f(X) be a separable polynomial in K[X] with Galois group G_f over K and $Z_f = \{\alpha_1, \ldots, \alpha_n\} \subset K_f$. We know (Proposition 1, lecture 2) that G_f permutes the elements of Z_f , so G_f can be embedded into $S_{Z_f} \simeq S_n$ and can thus, be identified with a subgroup of S_n , which we will do from now on. This embedding has two properties important for us.

Proposition 2. Let f(X) be a separable polynomial of degree n.

- (a) f(X) irreducible over $K \Rightarrow n$ divides $|G_f|$.
- (b) f(X) irreducible over $K \Leftrightarrow G_f$ is a transitive subgroup of S_n .

Examples:

a) For $f_1(X) = X^4 - 4 \in \mathbb{Q}[X]$, $Z_f = \{\alpha_1 = \sqrt{2}, \alpha_2 = -\sqrt{2}, \alpha_3 = i\sqrt{2}, \alpha_4 = -i\sqrt{2}\}$, $\mathbb{Q}_f = Q[\sqrt{2}, i]$ and $G_f \subset S_4$. G_f is not transitive, which makes sense, as $f_1(X)$ is not irreducible in $\mathbb{Q}[X]$.

b) For $f_4(X) = X^3 - 2 \in Q[X]$, irreducible over \mathbb{Q} , $Z_f = \{\alpha_1 = \sqrt[3]{2}, \alpha_2 = \omega\sqrt[3]{2}, \alpha_3 = \omega^2\sqrt[3]{2}\}, \mathbb{Q}_f = \mathbb{Q}[\sqrt[3]{2}, \omega]$ and $G_f = \langle (123), (23) \rangle = S_3$, which is transitive.

In order to be able to compute G_f , we use what is known as the *discriminant* of f.

Definition. Let char $K \neq 2$, $f(X) \in K[X]$ and $f(X) = \prod_{i=1}^{n} (X - \alpha_i)$ in some splitting field. We set $\Delta(f) = \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)$. The discriminant of f(X) is defined to be $\text{Disc}(f) = \Delta(f)^2 = \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)^2$.

For example, $\text{Disc}(X^2 + aX + b) = a^2 - 4b$. But, how do we compute Disc(f) when we don't know the exact value of the roots of f? We do it by means of the formula

$$Disc(f) = (-1)^{n(n-1)/2} Res(f, f')$$

where, given any two polynomials $h(X) = a_0 + a_1X + ... + a_nX^n$, and $g(T) = b_0 + b_1T + ... + b_mT^n$ in K[X], with $a_n \neq 0, b_m \neq 0$, we define the resultant R(h,g) as the determinant of size $(m+n) \times (m+n)$,

$$R(h,g) = \begin{vmatrix} a_n & a_{n-1} & a_{n-2} & \dots & a_0 & 0 & 0 & \dots \\ 0 & a_n & a_{n-1} & \dots & a_1 & a_0 & 0 & \dots \\ 0 & 0 & a_n & \dots & a_2 & a_1 & a_0 & \dots \\ \dots & \dots \\ b_m & b_{m-1} & b_{m-2} & \dots & b_0 & 0 & 0 & \dots \\ 0 & b_m & b_{m-1} & \dots & b_1 & b_0 & 0 & \dots \\ 0 & 0 & b_m & \dots & b_2 & b_1 & b_0 & \dots \\ 0 & 0 & 0 & \dots & \dots & \dots & \dots & \dots \end{vmatrix}$$

Using Euclidean Division, we may write f = qg + r, with $\deg(q) = n - m$, and r = 0 or $\deg(r) < m$. If r = 0, R(f,g) = 0. If $r \neq 0$ and $\deg(r) = k < m$,

$$R(f,g) = (-1)^{nm} b_m^{n-k} R(g,r).$$

Examples: $\text{Disc}(X^3 + aX + b) = -4a^3 - 27b^2$; $\text{Disc}(X^4 + aX + b) = -27a^4 + 256b^3$; $\text{Disc}(X^4 + aX^2 + b) = 16b(a^2 - 4b)^2$.

We recall that every permutation can be writen as composition of traspositions in many different ways, all of which share the parity of the number of traspositions involved. If a permutation can be written as an even number of traspositions, we say that it is even, with signature +1. If it can be written as an odd number of traspositions, we say that it is odd with signature -1.

Definition: The set of all even permutations in S_n is call A_n with $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$.