NAProject 2018 Module IV: Computing Galois Groups Lectures 1 and 2: June
25-26, 2018

Let K be a field and f € K[X] a separable monic polynomial of degree n.
Galois gave answer to the question of how to know whether the equation f(X) =0
is solvable by radicals. In the previous three modules the strategy developed by
Galois was introduced. We recall it.

Step 1: (Module II, Lectures 1, 2). We construct the splitting field K¢ of f over
K, the unique (up to isomorphism) extension Ky such that:

(a) f(X)=(X—a1)-- (X —an) € Kf[X];
(b) [Ky: K] < (deg f)|.

Step 2: (Module II, Lectures 3, 6, Milne 3.2). We construct the Galois Group G of

the polynomial f over K, namely, G = Gal(K;/K) = {¢ : Ky — K¢|¢ is an isomorphism and ¢|x =
identity}, with |Gy| = [K; : K].

Step 3: (Module III, Lecture 3). We stablish a one-to-one correspondende between

the subfields of Ky containing K and the subgroups of G = Gal(K;/K), known

as the fundamental theorem of Galois theory (Milne, 3.16), { subgroups of G} +

{ intermediate fields K C M C Ky} given by H — K;J; M — Gal(Ky/M) which

satisfies, among others, the following properties

(a) the correspondence is order reversing: H; D Hy < Kfl C K;b;
(b) indexes equal degrees: (H; : Ho) = [K}q2 : Kfl];

(c) H is normal in G ¢ K’ is normal (and, hence, Galois) over K, in which case,
Gal(K}q/K) ~ G/H.

Step 4: Galois, 1832): The equation f = 0 is solvable by radicals if and only if the
Galois group Gy of f is solvable. (Module III, Lecture 6, Milne 3.27.) This theorem
reduces de question to computing G ¢ studying whether of not G is solvable.

The Galois Group of a polynomial
Proposition 1. Let K be a field, and let f(X) € K[X] be a separable polynomial
with splitting field Ky = Ko, ..., a,], with Zeros(f) = {cu,...,a,} and Galois
group Gy = Gal(Ky/K).
(i) Gy permutes the roots of f: If ¢ € Gy and «; € Zeros(f), then o(a;) = a; €
Zeros(f)
(ii) There exists an injective homomorphism 6 : Gy — SZeros(s) = Sn, which
allows us to identify Gy with its image in S,, (which we will do from now on). It
also implies that |G| divides n!.

Examples: f(X) = X* -4 € QX], f(X) = X3 -1, f(X) = X% -1 and
F(X)=Xx3—2
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Example 1: We consider the polynomial f(X) = X% — 4 € Q[X]. Then, since
the polynomial factorizes in C[X] as f(X) = (X2 —2)(X2 +2) = (X — vV2)(X +
V2)(Xv2)(X + iv2) € C[X], its splitting field is Q[v/2, ], with [Q[v/2,4] : Q] =
[Q[v2,4] : Q[v2] - [Q[v2] : Q] = 2-2 = 4. Thus, we can view Q[v/2,i] as a vector-
space of dimension 4 over Q, with base, for example, B = {1,v/2,1,iv/2}.

Let us compute G = Gal(Q[v/2,i]/Q). Every ¢ € G is an isomorphism ¢ : Q[v/2,i] —
Q[v/2,14] with ¢|g = Id., so it is a Q-isomorphism of Q[v/2,i] seen as vector-space
over Q, and it will be determined by the images of the elements of any base, for
example B. Notice that it suffices to find the images under ¢ of v/2 and 4. Since
¢ is a homomorphism, we know that ¢(1) = 1 and ¢(iv/2) = #(1)$(v/2). Thus, we
need only to determine the image under ¢ of v/2 and i.

(V22 =2= 6((V2)?) = 6(2) = 6(1+1) = ¢(1)+o(1) =2 = ¢(V2)? =2 = $(V/2)

(Vi)? = =1 = ¢((Vi)?) = ¢(=1) = =1 = ¢(Vi)> = =1 = ¢(Vi) = {i —i
Consequently, G = {¢1 =Id., ¢2, ¢3, ¢4}, with

d1(V2) = V2, ¢1(i) =i, ¢1(iV2) = iV?2;
P2(V2) = —V2, ¢o(i) =i, $2(iV2) = —iV2;
$3(V2) = V2, ¢3(i) = —i, ¢3(iV2) = —iv2;

$a(V2) = =V2, ¢a(i) = —i, da(iV2) =iV2
The zeros of f are Zeros(f) = {a1 = V2,03 = —V/2,a3 = i,a4 = iv/2}. Thus,
the inyective homomorphism 6 : G — SZeros( n= Sy, allows us to identify G with
H={Id,(12),(34),(12)(34)} <S4, via
b1 I, ¢y (12)(34), ¢3¢ (34), b1 & (12).

There are five subgroups in G: G, which fixes the field Q[v/2,i]% = Q; ((1 2)), which
fixes the field Q[v/2,4]){( 2) = Q[iv/2]; (3 4)), which fixes the field Q[v/2,4]{? 4)) =
Q[v/2]; ((1 2)(3 4)), which fixes the field Q[v/2,4]{* G 4) = Q[i]; and {Id.} which
fixes Q[v/2,i]. Thus, the Galois correspondence is

Q[v2,4]  {1d}Q[iv2] ¢ ((1 2))Q[V2] ¢ (3 4)Qli] « (1 2)(34))Q & &

Example 2: We consider the polynomial f(X) = X3 —1 € Q[X]. Then, since the
polynomial factorizes in C[X] as f(X) = (X - 1)(X?2+ X +1) = (X — 1)(X —
w)(X —w?) € C[X], withw = ™" = _1%‘/?37 root of the equation w? +w + 100, its
splitting field is Q[w], with [Q[w] : Q] = 2. Thus, we can view Q[/—3 as a vector-
space of dimension 2 over Q, with base, for example, B = {1,w}. Let us compute
G = Gal(Q[w]/Q). This time, every ¢ € G will be determined by the image of w.
WP 4w+1=0=¢w)? +ow) +1=0=d(w) ={w—-w

Consequenly, G = {¢1 = Id., ¢2}, with ¢o(w) = w?. The zeros of f are Zeros(f) =
{a1 = 1,9 = w, a3 = w?}. Thus, the inyective homomorphism 0 : G — S7eros(f) =
S3, allows us to identify G with ((2 3)) < S3, via

d1 < Id., ¢2 < (2 3).

{\/i—ﬁ



3

Being of order 2, G has no proper subgroups, just as the extension Q C Q(v/—3)
has no proper sub-extensions, since it is of degree 2 and 2 is prime.

Example 3: We consider the polynomial f(X) = X% —1 € Q[X]. Then, since the
polynomial factorizes in C[X] as f(X) = (X? - 1)(X?+1) = (X — 1)(X? + X +
DX+D)(X2-X+1)) = (X -1)(X —w)(X —w?)(X+1)(X +w)(X +w?) € C[X], its
splitting field is Q[w], and we are in the same situation as in the previous example.
Thus X3 — 1 and X© — 1 share the same splitting field, namelly Q(w) = Q(iv/3).

Example 4: We consider the polynomial f(X) = X?-2 = (X —V/2)(X—wv/2)(X —
w?V/2) € C[X]. Tts splitting field is Q[v/2,w], with [Q[¥/2,w] : Q] = [Q[V/2,w] :
Q[v2] - [Q[v/2] : Q] = 2-3 = 6. Thus, we can view Q[/2,w] as a vector-space of
dimension 6 over Q, with base, for example, B = {1, /2, V22, w,w¥/2,wv/22}.

Every ¢ € G = Gal(Q[V/2,w]/Q) will be determined by the images of v/2 and w.
(V2! =2 = 6(V2)) =25 - ¢(V2) = { V22 V2

WP +w+1=0= 9w’ +ow) +1=0=d(w) ={w—-w

Consequenly, G = {Id., p, p?, 7}, with

p(\?»/i) = w\&x/i p(w) =w,

T(V2) = V2,7(w) = o?,
with p3 = 72 = Id., and 7p = p?7. The zeros of f are Zeros(f) = {a; = V/2, a5 =
wV/2, a3 = w?¥/2}. Thus, the inyective homomorphism 6 : G < SZeros(f) ~ S3,
allows us to identify G with the subgroup H = ((1 2 3),(2 3)) < S3, via

o1 1d, p(123), p=2(132), 7+ (23).

But then, ((1 2 3),(2 3)) = S3, so G ~ S3. There are six subgroups in G: G,
which fixes the field Q[v/2,w]¢ = Q; ((1 2 3)), which fixes the only quadratic
sub-field, Q[v/2,w]{( 230 = Q[w]; ((12)), which fixes the field Q[v/2]((* 2 =
Q[w?+/2]; ((1 3)), which fixes the field Q[¢/2](" 3 = Q[w+/2]; ((2 3)) which fixes
Q[v/2){? 3 = [¥/2]; and {Id.} which fixes Q[v/2,i]. Thus, the Galois correspon-
dence is

QV2,w] & {1d.3QW[V2] + (1 3))Qw?[V2] + (1 2))QIV2] + ((2 3))Qlw] (12 3)Q +> G = S



