
NAProject 2018 Module IV: Computing Galois Groups Lectures 1 and 2: June
25-26, 2018

Let K be a field and f ∈ K[X] a separable monic polynomial of degree n.
Galois gave answer to the question of how to know whether the equation f(X) = 0
is solvable by radicals. In the previous three modules the strategy developed by
Galois was introduced. We recall it.

Step 1: (Module II, Lectures 1, 2). We construct the splitting field Kf of f over
K, the unique (up to isomorphism) extension Kf such that:

(a) f(X) = (X − α1) · · · (X − αn) ∈ Kf [X];
(b) [Kf : K] ≤ (deg f)|.

Step 2: (Module II, Lectures 3, 6, Milne 3.2). We construct the Galois Group G of
the polynomial f overK, namely, G = Gal(Kf/K) = {φ : Kf → Kf |φ is an isomorphism and φ|K =
identity}, with |Gf | = [Kf : K].

Step 3: (Module III, Lecture 3). We stablish a one-to-one correspondende between
the subfields of Kf containing K and the subgroups of G = Gal(Kf/K), known
as the fundamental theorem of Galois theory (Milne, 3.16), { subgroups of G} ↔
{ intermediate fields K ⊂ M ⊂ Kf} given by H 7→ KH

f ; M 7→ Gal(Kf/M) which
satisfies, among others, the following properties

(a) the correspondence is order reversing: H1 ⊃ H2 ⇔ KH1

f ⊂ KH2

f ;

(b) indexes equal degrees: (H1 : H2) = [KH2

f : KH1

f ];

(c) H is normal in G ⇔ KH
f is normal (and, hence, Galois) over K, in which case,

Gal(KH
f /K) ' G/H.

Step 4: Galois, 1832): The equation f = 0 is solvable by radicals if and only if the
Galois group Gf of f is solvable. (Module III, Lecture 6, Milne 3.27.) This theorem
reduces de question to computing Gf studying whether of not Gf is solvable.

The Galois Group of a polynomial

Proposition 1. Let K be a field, and let f(X) ∈ K[X] be a separable polynomial
with splitting field Kf = K[α1, . . . , αn], with Zeros(f) = {α1, . . . , αn} and Galois
group Gf = Gal(Kf/K).

(i) Gf permutes the roots of f : If σ ∈ Gf and αi ∈ Zeros(f), then σ(αi) = αj ∈
Zeros(f)

(ii) There exists an injective homomorphism θ : Gf → SZeros(f) ' Sn, which

allows us to identify Gf with its image in Sn (which we will do from now on). It
also implies that |Gf | divides n!.

Examples: f(X) = X4 − 4 ∈ Q[X], f(X) = X3 − 1, f(X) = X6 − 1 and
f(X) = X3 − 2
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Example 1: We consider the polynomial f(X) = X4 − 4 ∈ Q[X]. Then, since

the polynomial factorizes in C[X] as f(X) = (X2 − 2)(X2 + 2) = (X −
√

2)(X +√
2)(Xi

√
2)(X + i

√
2) ∈ C[X], its splitting field is Q[

√
2, i], with [Q[

√
2, i] : Q] =

[Q[
√

2, i] : Q[
√

2] · [Q[
√

2] : Q] = 2 · 2 = 4. Thus, we can view Q[
√

2, i] as a vector-

space of dimension 4 over Q, with base, for example, B = {1,
√

2, i, i
√

2}.

Let us computeG = Gal(Q[
√

2, i]/Q). Every φ ∈ G is an isomorphism φ : Q[
√

2, i]→
Q[
√

2, i] with φ|Q = Id., so it is a Q-isomorphism of Q[
√

2, i] seen as vector-space
over Q, and it will be determined by the images of the elements of any base, for
example B. Notice that it suffices to find the images under φ of

√
2 and i. Since

φ is a homomorphism, we know that φ(1) = 1 and φ(i
√

2) = φ(1)φ(
√

2). Thus, we

need only to determine the image under φ of
√

2 and i.

(
√

2)2 = 2⇒ φ((
√

2)2) = φ(2) = φ(1+1) = φ(1)+φ(1) = 2⇒ φ(
√

2)2 = 2→ φ(
√

2) =
{√

2−
√

2

(
√
i)2 = −1⇒ φ((

√
i)2) = φ(−1) = −1⇒ φ(

√
i)2 = −1⇒ φ(

√
i) = {i− i

Consequently, G = {φ1 = Id., φ2, φ3, φ4}, with

φ1(
√

2) =
√

2, φ1(i) = i, φ1(i
√

2) = i
√

2;

φ2(
√

2) = −
√

2, φ2(i) = i, φ2(i
√

2) = −i
√

2;

φ3(
√

2) =
√

2, φ3(i) = −i, φ3(i
√

2) = −i
√

2;

φ4(
√

2) = −
√

2, φ4(i) = −i, φ4(i
√

2) = i
√

2

The zeros of f are Zeros(f) = {α1 =
√

2, α2 = −
√

2, α3 = i, α4 = i
√

2}. Thus,
the inyective homomorphism θ : G ↪→ SZeros(f) ' S4, allows us to identify G with

H = {Id., (1 2), (3 4), (1 2)(3 4)} < S4, via

φ1 ↔ Id., φ2 ↔ (1 2)(3 4), φ3 ↔ (3 4), φ4 ↔ (12).

There are five subgroups in G: G, which fixes the field Q[
√

2, i]G = Q; 〈(1 2)〉, which

fixes the field Q[
√

2, i]〈(1 2)〉 = Q[i
√

2]; 〈(3 4)〉, which fixes the field Q[
√

2, i]〈(3 4)〉 =

Q[
√

2]; 〈(1 2)(3 4)〉, which fixes the field Q[
√

2, i]〈(1 2)(3 4)〉 = Q[i]; and {Id.} which

fixes Q[
√

2, i]. Thus, the Galois correspondence is

Q[
√

2, i]↔ {Id.}Q[i
√

2]↔ 〈(1 2)〉Q[
√

2]↔ 〈(3 4)〉Q[i]↔ 〈(1 2)(3 4)〉Q↔ G

Example 2: We consider the polynomial f(X) = X3 − 1 ∈ Q[X]. Then, since the
polynomial factorizes in C[X] as f(X) = (X − 1)(X2 + X + 1) = (X − 1)(X −
ω)(X−ω2) ∈ C[X], with ω = e

2πi
3 = −1+

√
−3

2 , root of the equation ω2 +ω+100, its

splitting field is Q[ω], with [Q[ω] : Q] = 2. Thus, we can view Q[
√
−3 as a vector-

space of dimension 2 over Q, with base, for example, B = {1, ω}. Let us compute
G = Gal(Q[ω]/Q). This time, every φ ∈ G will be determined by the image of ω.

(ω)2 + ω + 1 = 0⇒ φ(ω)2 + φ(ω) + 1 = 0⇒ φ(ω) = {ω − ω
Consequenly, G = {φ1 = Id., φ2}, with φ2(ω) = ω2. The zeros of f are Zeros(f) =
{α1 = 1, α2 = ω, α3 = ω2}. Thus, the inyective homomorphism θ : G ↪→ SZeros(f) '
S3, allows us to identify G with 〈(2 3)〉 < S3, via

φ1 ↔ Id., φ2 ↔ (2 3).
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Being of order 2, G has no proper subgroups, just as the extension Q ⊂ Q(
√
−3)

has no proper sub-extensions, since it is of degree 2 and 2 is prime.

Example 3: We consider the polynomial f(X) = X6 − 1 ∈ Q[X]. Then, since the
polynomial factorizes in C[X] as f(X) = (X3 − 1)(X3 + 1) = (X − 1)(X2 + X +
1)(X+1)(X2−X+1)) = (X−1)(X−ω)(X−ω2)(X+1)(X+ω)(X+ω2) ∈ C[X], its
splitting field is Q[ω], and we are in the same situation as in the previous example.

Thus X3 − 1 and X6 − 1 share the same splitting field, namelly Q(ω) = Q(i
√

3).

Example 4: We consider the polynomial f(X) = X3−2 = (X− 3
√

2)(X−ω 3
√

2)(X−
ω2 3
√

2) ∈ C[X]. Its splitting field is Q[ 3
√

2, ω], with [Q[ 3
√

2, ω] : Q] = [Q[ 3
√

2, ω] :

Q[ 3
√

2] · [Q[ 3
√

2] : Q] = 2 · 3 = 6. Thus, we can view Q[ 3
√

2, ω] as a vector-space of

dimension 6 over Q, with base, for example, B = {1, 3
√

2,
3
√

22, ω, ω 3
√

2, ω
3
√

22}.

Every φ ∈ G = Gal(Q[ 3
√

2, ω]/Q) will be determined by the images of 3
√

2 and ω.

(
3
√

2)3 = 2⇒ φ(
3
√

2)3 = 2⇒ → φ(
3
√

2) =
{

3
√

2ω
3
√

2ω2 3
√

2

(ω)2 + ω + 1 = 0⇒ φ(ω)2 + φ(ω) + 1 = 0⇒ φ(ω) = {ω − ω
Consequenly, G = {Id., ρ, ρ2, τ}, with

ρ(
3
√

2) = ω
3
√

2, ρ(ω) = ω,

τ(
3
√

2) =
3
√

2, τ(ω) = ω2,

with ρ3 = τ2 = Id., and τρ = ρ2τ . The zeros of f are Zeros(f) = {α1 = 3
√

2, α2 =

ω 3
√

2, α3 = ω2 3
√

2}. Thus, the inyective homomorphism θ : G ↪→ SZeros(f) ' S3,

allows us to identify G with the subgroup H = 〈(1 2 3), (2 3)〉 < S3, via

φ1 ↔ Id., ρ↔ (1 2 3), ρ = 2↔ (1 3 2), τ ↔ (2 3).

But then, 〈(1 2 3), (2 3)〉 = S3, so G ' S3. There are six subgroups in G: G,

which fixes the field Q[ 3
√

2, ω]G = Q; 〈(1 2 3)〉, which fixes the only quadratic

sub-field, Q[ 3
√

2, ω]〈(1 2 3)〉 = Q[ω]; 〈(12)〉, which fixes the field Q[ 3
√

2]〈(1 2)〉 =

Q[ω2 3
√

2]; 〈(1 3)〉, which fixes the field Q[ 3
√

2]〈(1 3)〉 = Q[ω 3
√

2]; 〈(2 3)〉 which fixes

Q[ 3
√

2]〈(2 3)〉 = [ 3
√

2]; and {Id.} which fixes Q[
√

2, i]. Thus, the Galois correspon-
dence is

Q[
3
√

2, ω]↔ {Id.}Q[ω[
3
√

2]↔ 〈(1 3)〉Q[ω2[
3
√

2]↔ 〈(1 2)〉Q[
3
√

2]↔ 〈(2 3)〉Q[ω]↔ (1 2 3)Q↔ G = S3


