• Answer to questions:

— In a ring A (commutative with unity), the group of units A^{\times} , irreducible elements: definition, examples: fields, \mathbb{Z} , K[X], $\mathbb{Z}[X]$. Irreducible elements in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.

— Order of an element x in a group G: kernel of the homomorphism $\mathbb{Z} \to G$ which maps n to x^n .

— Cyclic groups. Subgroups. Direct products of cyclic groups. Finite groups of order ≤ 7 (already done in fourth course – it seemed necessary to repeat).

— The group $\operatorname{GL}_2(\mathbb{Q})$.

— The quartic extension $E = \mathbb{Q}(i, \sqrt{2})$ of \mathbb{Q} . Galois group, subgroups, subfields, Galois correspondence between subfields of E and subgroups of the Galois group.

— Given a Galois extension E/F and a subfield M of E containing F, necessary and sufficient condition for M to be Galois over F.

• The Galois group of a separable polynomial of degree n as a subgroup of \mathfrak{S}_n . Transitive subgroups of \mathfrak{S}_n . The Galois group of f over F is transitive if and only if f is irreducible over F. Example: the Galois group of $(X^2 - 2)(X^2 + 1)$ over \mathbb{Q} .

Reference: J.S. Milne, Fields and Galois Theory Version 4.52 March 17, 2017.