• Answer to questions:

- What is the difference between an extension and a splitting field?
- In an extension, is it true that the two fields have the same characteristic?

• Erratum to Remark 3.11 (b) p. 38 in Milne's notes (pointed out by Roger Wiegand). Corrected version, following Hironori Shiga, NAP 2017 Module III Problem 1

http://www.rnta.eu/nap/nap-2017/course-2017/module_3_hw_1.pdf

Let E/F be a separable finite extension and let G be a finite subgroup of $\operatorname{Aut}(E/F)$. Then Proposition 2.7 (a) says $\#\operatorname{Aut}(E/E^G) = [E : E^G]$. On the other hand, by (3.5), we have $\operatorname{Gal}(E/E^G) = G = \operatorname{Aut}(E/E^G)$, therefore $\#G = [E : E^G]$. In particular, when E/F is Galois with Galois group G, we have

 $G = \operatorname{Gal}(E/F) = \operatorname{Aut}(E/F)$ and $\#\operatorname{Gal}(E/F) = [E:F].$

• For an extension E/F where $E = F(\alpha_1, \ldots, \alpha_m)$, an element of $\operatorname{Aut}(E/F)$ is determined by its values at $\alpha_1, \ldots, \alpha_m$. In particular, for a simple extension $E = F(\alpha)$, an element of $\operatorname{Aut}(E/F)$ is determined by its values at α . Conjugates of an algebraic element over F (roots of the irreducible polynomial). If α has r conjugates over F in

 $F(\alpha)$, then Aut $(F(\alpha)/F)$ has at most r elements.

For a Galois extension E/F of degree d, $\operatorname{Aut}(E/F)$ is a group of order d. Examples.

• Statement of the Fundamental Theorem of Galois Theory (Theorem 3.16).

Reference: J.S. Milne, Fields and Galois Theory Version 4.52 March 17, 2017.